
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A TOOL FOR EFFICIENT EXECUTION AND
DEVELOPMENT OF REPETITIVE TASK GRAPHS

ON A DISTRIBUTED MEMORY MULTIPROCESSOR

by

Charles Brian Koman

September 1995

Thesis Advisor: Amr Zaky

Approved for public release; distribution is unlimited.

19960401 032
D2ICtXJ FC!;iZD

Form Approved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
I September 1995 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A TOOL FOR EFFICIENT EXECUTION AND DEVELOPMENT OF

REPETITIVE TASK GRAPHS ON A DISTRIBUTED MEMORY
MULTIPROCESSOR (U)

6. AUTHOR(S)

Koman, Charles Brian

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)
The major problem addressed by this research is the development of one or more scheduling heuristics suitable for

applications which involve repetitive execution of task graphs on a distributed memory multiprocessor, and to test the perfor-
mance of these heuristics on a multiprocessor.

The approach taken was to create more than one modified version of the PS heuristic previously introduced [KAS
94]. The modifications aim to provide a more realistic characterization of the computation-communication mechanism for the
machine used in the experiments. In order to identify these characteristics, the performance of the system was comprehen-
sively tested using different kinds of experiments. In addition, tools were developed to facilitate the development of acyclic
applications. The programming tools developed require the programmer to write the program such that each node of the graph
is a separate function. These functions are then packaged and converted to compilable source code in a high level program-
ming language.

The heuristic were tested using two actual applications, the correlator and Gaussian elimination, and a set of ran-
domly created acyclic task graphs whose structure resembles realistic applications. These task graphs were created, scheduled,
and packaged using RPS. Task graphs scheduled using RPS are shown to produce, on the average, efficiencies of 67 percent
on four processors and 59 percent with eight processors for graphs with a 10 to 1 computation-communication ratio. The other
extreme, graphs with a I to 1 computation-communication ratio, produced no appreciable speedup.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Distributed Memory, Throughput, Periodic Scheduling 157

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

A TOOL FOR EFFICIENT EXECUTION AND DEVELOPMENT
OF REPETITIVE TASK GRAPHS ON A DISTRIBUTED

MEMORY MULTIPROCESSOR

Charles Brian Koman
Lieutenant, United States Navy

B.E.E., Georgia Institute of Technology, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1995

Author: _ _ _ _ _ _ _ _ _ _

Charles Brian Koman

Approved by:

Amr Zaky, Thesis Advisor _3

/ a-TkSh•, Second Reader

Ted Lewis, Chairman,
Department of Computer Science

iii

iv

ABSTRACT

The major problem addressed by this research is the development of one or more

scheduling heuristics suitable for applications which involve repetitive execution of task

graphs on a distributed memory multiprocessor, and to test the performance of these

heuristics on a multiprocessor.

The approach taken was to create more than one modified version of the PS heuristic

previously introduced [KAS 94]. The modifications aim to provide a more realistic

characterization of the computation-communication mechanism for the machine used in

the experiments. In order to identify these characteristics, the performance of the system

was comprehensively tested using different kinds of experiments. In addition, tools were

developed to facilitate the development of acyclic applications. The programming tools

developed require the programmer to write the program such that each node of the graph is

a separate function. These functions are then packaged and converted to compilable source

code in a high level programming language.

The heuristic were tested using two actual applications, the correlator and Gaussian

elimination, and a set of randomly created acyclic task graphs whose structure resembles

realistic applications. These task graphs were created, scheduled, and packaged using RPS.

Task graphs scheduled using RPS are shown to produce, on the average, efficiencies of 67

percent on four processors and 59 percent with eight processors for graphs with a 10 to 1

computation-communication ratio. The other extreme, graphs with a 1 to 1 computation-

communication ratio, produced no appreciable speedup.

vi

TABLE OF CONTENTS

1. IN TRO D U CTIO N ... 1
A . OBJECTIV ES .. 1

1. Scope of the Thesis ... 3
B . TH ESIS O RG A NIZA TION .. 3

II. BA CK G R OU N D ... 5
A . TH E M A PPIN G PRO BLEM ... 5
B . PRIO R W ORK .. 6

1. Graph Partitioning .. 7
2. M apping ... 7
3. Sum m ary ... 11

C. PS H EU RISTIC ... 11
1. Processor Selection ... 13
2. Instance O verlap .. 14
3. Exam ple .. 15

Il. HARDWARE AND SOFTWARE CHARACTERISTICS 17
A . INM O S TR AN SPU TER S .. 17

1. G eneral Inform ation .. 17
2. IM S T800 ... 18
3. IM S B003 ... 18
4. IM S B004 ... 22

B . PA RA SO FT EX PRESS .. 26
1. System Configuration ... 26
2. Com m unications Functions .. 27

a.Processor A llocation .. 28
b.Loading Program s ... 28
c.M essage Passing .. 28
d.Additional Communications Functions 31
e.M ultitasking .. 32

3. Fam iliarization Testing .. 32
a.Sim ple M essage Passing ... 32
b.Changing M essage Types ... 33
c.Sending and Receiving Multiple Messages 33
d.Sending M essages Internally ... 33
e.N on-blocking Reads ... 34
f.M ultitasking .. 34
g.Program Loading .. 34
h.Program Looping ... 35
i.M essage Reception Order .. 35

4. Com m unications M odel .. 35
a.M essage Passing Testing .. 36
b.Internal M essage Passing ... 43

vii

c.Routing Delays .. 44
IV. RPS HEURISTIC AND PROGRAMMING TOOLS 49

A. RPS SCHEDULER ... 49
1. Transputer/Express System M odel .. 49

a.The Communications M odel .. 50
b.Routing Overhead M odel .. 50
c.Determining Routing Paths ... 51
d.Input and Output Effects .. 51

2. Input to the Scheduler .. 52
3. RPS Details .. 54

a.Scheduling Order ... 54
b.Processor Assignment ... 54
c.Index Assignment .. 59

B. RPS PACKAGER ... 61
1. Read and W rite Commands ... 61
2. Code Generation Information Files ... 62
3. Generated Node Code ... 63

a.Flow of Execution ... 64
b.Node Requirements ... 66
c.Node .tcs Files .. 67
d.Same Processor Buffering .. 68
e.Node Indexing Effects ... 68

4. Host PC Code .. 69
a.Execution Flow ... 70
b.M essage Passing and I/0 for the Host 73
c.Effect of Indices on I/O .. 74

5. Timing and Synchronization .. 74
C. RPS PROFILER ... 74
D. INPUT ERRORS ... 75

V. TESTING AND RESULTS .. 77
A. M ETHODOLOGY .. 77

1. Benchmarks ... 77
2. M ultiprocessor Topology .. 78
3. Scheduling M ethods ... 78

B. EXPERIM ENTS ... 78
1. Accuracy of the System M odel ... 78
2. Efficiency of the Scheduling Heuristic .. 79

a.Random Task Graphs ... 80
b.Correlator Graph ... 84
c.Gaussian Elimination .. 87

3. Comparison of the Two Scheduling Variations 90
4. Comparison with M H heuristic ... 91

a.Random Task Graphs ... 91

viii

b.Correlator Graph .. 93
c.Gaussian Elimination 94

VI. CONCLUSIONS .. 97
A. CONCLUSIONS ... 97
B. FUTURE WORK .. 98

A PPE N D IX ... 99
A. RPS SCHEDULER AND RPS PACKAGER MAIN PROGRAM 99
B. SCHEDULE FUNCTIONS HEADER FILE .. 99
C. SCHEDULE FUNCTIONS SOURCE FILE ... 101
D. PACKAGING HEADER FILE ... 119
E. PACKAGING SOURCE FILE .. 120
F. RPS PROFILER MAIN PROGRAM .. 138
G. PROFILER HEADER FILE .. 138
H. PROFILER SOURCE FILE .. 139

LIST OF REFERENCES .. 143
INITIAL DISTRIBUTION LIST ... 145

ix

I. INTRODUCTION

The physical limitations of traditional processor architectures cause an upper bound on

the attainable performance of the processor. A method of increasing the performance of

these processors is to build a multiprocessor system such that different segments of a

program can be run in parallel.

In order to utilize this type of system, the program must be broken up into relatively

independent parts and each part assigned to a processor. The problem of deciding which

processor to assign which piece of the program is of prime importance. The processor

assignment must be made in such a manner as to achieve a desired level of performance.

This is known as the mapping problem. [HAM 92]

Since it has been proven that finding an optimal solution to the mapping problem is NP-

complete, research into solving this problem has led to the development of many

suboptimal solutions. Suboptimal solutions take on many forms including graph-theoretic,

mathematical progranmming, queuing theory, search algorithms, and heuristics. These

methods, while not necessarily providing the best processor assignment, provide a solution

which results in a satisfactory assignment. [KAS 94]

A. OBJECTIVES

The work presented in this thesis deals with the mapping of iterative applications. An

area which provides many applications of this type is Digital Signal Processing (DSP). In

DSP applications, data arrives periodically requiring the program to be executed on each

instance of data.

An application that this thesis would be concerned with are represented by acyclic data

flow (or task) graphs. This graph is a directed acyclic graph (DAG) in which the nodes of

the graph represent the tasks of a program and the edges represent the communications

between the tasks. By requiring that the graph be acyclic, the condition that the processing

of new data does not depend on earlier results is established. An example of this type of

graph is shown in Figure 1.

Figure 1: Sample Task Graph. From [KAS 941.

Some task graphs that exhibit this characteristic are able to take advantage of

pipelining provided the processing of new data does not depend on earlier results. Task

graphs that are pipelined may be executed by overlapping successive instances such that

execution begins on later arriving data before execution is completed on earlier data. [HOA

93]

Prior work in this area has been concerned with minimizing the execution time of one

instance of the program. [BOK1 81, BOK2 81, DIX1 93, DIX2 93, ELR 90, HOA 93, KER

70, LOV 88]

The Periodic Scheduling (PS) heuristic developed by Kasinger [KAS 941 is designed

to maximize the throughput of applications of this nature. It maps the tasks of a task graph

to the processors of a system of any topology. These tasks are represented as nodes of a

3 D 4

directed acyclic graph. It considers communication between tasks, resource contention, and

system topology in making processor assignments.

The PS heuristic gives a general heuristic for assigning repetitive task graphs to

processors on a distributed memory multiprocessor system. Since PS is not designed for

any particular multiprocessor, the heuristic assumed a simplistic computation-

communication model for the underlying parallel processing system. In order to determine

the validity of PS as an effective method of mapping repetitive task graphs to

multiprocessors, the actual computation-communication model of the system utilized must

be incorporated in the heuristic.

1. Scope of the Thesis

This thesis presents a Realistic Periodic Scheduling (RPS) heuristic for an INMOS

T800 Transputer system utilizing Parasoft Express software. The RPS heuristic is a

modified version of the PS heuristic which accounts for system characteristics which have

been ignored in PS. The characteristics of the parallel processing system used had to be

determined experimentally by employing several tests designed to explore various aspects

of the systems communications model.1 Tools were developed to aid the programmer in

determining the schedule, packaging the nodes into compilable source code, and

determining accurate values for a nodes computation time. Experiments are conducted on

various benchmark programs using different system topologies and various

communications/computation ratios. The performance is compared with predicted

performance.

B. THESIS ORGANIZATION

Chapter II describes the mapping problem, highlights relevant prior research and

describes the PS heuristic and its characteristics. Chapter III presents a description of the

hardware and software systems utilized. In Chapter IV, the RPS heuristic is presented along

1. System characteristics were determined experimentally due to a lack of available information
describing the computation-communication model of the system.

3

with the programming tools developed. These tools are the RPS scheduler, RPS packager,

and RPS profiler. Modifications of the PS heuristic to reflect the system model are also

discussed. Research methodology and experimental results are explained in Chapter V.

Chapter VI draws conclusions from the results and suggestions for future work are given.

4

II. BACKGROUND

A. THE MAPPING PROBLEM

A distributed memory multiprocessor consists of multiple processors, each having its

own memory, connected by communications links. This system may be represented by an

undirected graph in which the processors are the nodes and the communications links are

the edges. We assume that the processors are homogeneous' such that task execution time

does not depend on the processor assigned. The communications links are assumed to be

homogeneous and bi-directional. An example of a processor graph is given in Figure 2.

Figure 2: Sample processor graph. From [KAS 94].

In our model, a parallel program is a set of tasks which communicate data between

them. Each task consists of three phases. These are consume inputs, execute, and produce

outputs, and are carried out in this order. These tasks can be represented by a weighted

digraph. The weights represent the amount of computation and communication that is

associated with each task. The task graph consists of the tasks (nodes) and the

communications annotation (edges). The applications that are of concern to us have the

1. This constraint simplifies the exposition, but can be lifted without serious effects on our method-
ology.

5

additional property that the graph must be acyclic. An example of a task graph is given in

Figure 3. [HAM 92]

Figure 3: Sample task graph. From [AKI 93].

The mapping problem consists of finding a mapping of tasks from the task graph to the

processors in the system such that we minimize the execution time of the program. In order

for a mapping algorithm to be practical, less time should be devoted to the mapping

problem than to executing the application. Since it has been proven that finding an

algorithm which solves the mapping problem is NP-complete for most interesting

instances, methods which give sub-optimal solutions have been developed. [HOA 93]

B. PRIOR WORK

Heuristic methods for solving the mapping problem can lead to an acceptable solution

in a reasonable amount of time. A heuristic contains three parts: (1) an initial guess at the

solution; (2) an improvement procedure; (3) an objective function. These can be broken

down into one-pass and iterative. A one-pass heuristic makes a processor assignment and

does not change it. An iterative heuristic temporarily reassign tasks to different processor

and examine if the solution has improved. This continues until an acceptable mapping is

found or the maximum number of iterations has taken place. [HAM 92]

6

Iterative heuristics are either deterministic or probabilistic. Deterministic-iterative

algorithms evaluate an objective function after each iteration and the solution is kept only

if it is better than the previous one. Probabilistic algorithms keep the solution if it is better

than the previous. Solutions that are worse than previous are also kept according to some

probability. [HAM 93]

1. Graph Partitioning

Graph partitioning algorithms relate to graph mapping. A graph partitioning breaks a

graph into parts. Each part can then be embedded into the processors graph. This can be

viewed as a one-pass heuristic. [HAM 93]

One such graph partitioning algorithm is presented by Kernighan and Lin [KER 70].

There algorithm deals with partitioning a graph into two equal sized subsets of the nodes.

It begins with an arbitrary partition of the graph, and then, by exchanging nodes of the

subsets, attempt to reduce the cost of the edges cut. The complexity of this algorithm is

O(n2). This algorithm is also extended to include partitioning into unequal sized subsets

and multiple subsets. Multiple subsets are found using repeated applications of the two

subset partition.

2. Mapping

Bokhari [BOK1 81] presents a heuristic for mapping task graphs onto a Finite Element

Machine (FEM). This method takes the adjacency matrix of the task graph and, through a

series of pairwise exchanges, outputs a permutation of this matrix that more closely

resembles the adjacency matrix of the FEM. These exchanges are made such that the

exchange that results in the largest gain in cardinality. The cardinality is defined as the

number of task graph edges that fall on array edges. If no such exchange exists, a

probabilistic jump to a mapping close to the current is made in an attempt to improve the

solution.

Bokhari [BOK2 81] also presents a dynamic programming approach to solving the

mapping problem. He assumes that the processors in the system are dissimilar. Because of

7

this, the tasks will take different amounts of time to execute on different processors. The

objective of the algorithm is to assign the tasks to the processor on which they execute most

rapidly whenever possibly, while also considering overhead due to interprocessor

communication. His algorithm uses a shortest tree approach and minimizes the sum of node

execution time and interprocess communications cost. One limitation to this method is the

communications pattern of the task graph forms a tree. This algorithm finds a solution in

O(mn2) time where m is the number of tasks and n is the number of processors.

Lo [LOV 88] developed a three part algorithm which minimizes the total execution

and communication costs of the processor assignment. It seeks greater concurrency and

load balancing of the tasks by including the effects of interference caused by tasks being

assigned to the same processor. Interference costs include contention for resources,

communications costs associated with contention for buffers and synchronization, and

costs due to tasks being assigned to the same processor. This algorithm, which uses static

assignment of tasks to processors, consists of a grab phase, a lump phase, and a greedy

phase. The grab phase views the n-processor system as a two processor system, a given

processor as one and all of the rest as the other. A Max Flow/ Min Cut algorithm is used to

assign tasks to the single processor. The tasks that do not get assigned by this method are

sent to the lump phase where all remaining tasks are assigned to one processor if it does not

result in too high of a cost. If tasks still remain, the greedy phase clusters tasks with high

interprocess communications and assigns them to processors to the cheapest processor for

that cluster.

A heuristic that maximizes throughput is presented by Hoang and Rabaey [HOA 93].

This heuristic attempts to maximize the parallelization and pipelining of a program. They

schedule nodes to processors such that each processor belongs to a stage of the

computation. The algorithm attempt to minimize the length of a stage. By allowing more

than one processor to be assigned to a stage, the parallelization of the program can be

exploited. Nodes are scheduled to start as soon as possible taking into account

communications delays, memory capacity and processor availability.

8

The next methods presented are closer to what we are trying to achieve. These

algorithms utilize the task graph in order to determine the schedule. These differ in that they

are designed to minimize execution time.

Dixit-Radiya and Panda [DIX1 93] utilize a Temporal Communication Graph (TCG)

to represent the task graph. In this graph, a task is defined to be a group of nodes of the

graph. They attempt to find a minimal completion time of the program by minimizing link

contention. Temporal link contention and unequal distances between processors are both

considered. Their heuristic generates an initial processor assignment by selecting tasks in

decreasing order of total communications, minimizing the distance between heavily

communicating tasks. Once this is done, the iterative step does a pairwise exchange of tasks

which reduce the maximum link contention.

Dixit-Radiya and Panda [DIX2 93] present three other heuristics using the TCG. These

deal with clustering of tasks. With these heuristics, the tasks are already assigned to

processors. The desire is to cluster tasks together on processors such that a reduction in

completion time is achieved. One chooses tasks to merge by examining each pair of tasks

and picking the pair that results in the greatest reduction in completion time. The other two

also include processor contention in the heuristic by examining the amount of

parallelization between clusters and making a trade off between this the communication

between clusters.

The Mapping Heuristic (MH) was devised by El-Rewini and Lewis [ELR 90]. This

method attempts to minimize final completion time by taking into consideration the target

machine, communications delays, contention, and the balance between computation and

communications. List scheduling is used as each node of the task graph is assigned a

priority. The tasks are placed on an event list if they have no predecessors. The first ready

task is removed from the list and scheduled such that it cannot finish any earlier on another

processor. If the task has immediate successors, the status of the successors is updated. This

continues until all tasks have been scheduled.

9

The next technique is extremely close to our method. More time will be devoted to

explaining it since it strongly relates to our algorithm.

The Revolving Cylinder technique by Shukla, Little, and Zaky [SHU 92] is a method

of determining task execution sequence in repetitive applications. It was originally

designed for shared memory multiprocessors. This method takes a task graph as its input

and produces a mapping to the systems processors as an output. The technique gets its name

from the form that the schedule takes on. If the resulting schedule were to be wrapped

around, with the end touching the beginning, it would form a cylinder. The cylinders

circumference is determined by summing the total execution time of all nodes and dividing

by the number of processors. This is representative of the maximum throughput that the

system will support.

Each processor in the system is assigned one band of the cylinder. Each of these bands

is then divided into slots. The nodes of the task graph are then assigned to the different

bands by fitting them into the different slots. These assignments can be made according to

any method desired. [SHU 94]

The resulting cylinder is the schedule for one instance of the task graph. In the case of

a periodic application, when data is periodically arriving, the task graph is instantiated each

time new data arrives. Subsequent instances of the graph are overlapped with previous

instances. Each node is assigned an index to prevent conflicts between separate instances

of the graph. This is necessary since dependencies in the associated task graph require

different instances of the task graph to be mapped to one revolution of the cylinder. [SHU

94]

The result of RC scheduling is shown in Figure 4. This figure shows the RC scheduling

of the graph in Figure 3 on a two processor system.

Using Figure 4 as an example, we see that task a is executed first on processor 1. At

time 1, task f is scheduled to execute on processor 1, but since it is dependent on tasks that

have not yet completed, it cannot execute. Similarly, task e was scheduled to execute at

time 0 on processor 2, but could not for the same reason. At time 3, task c executes on

10

processor 1 followed by task b at time 5. These can execute since they are dependent on

task a which completed execution at time 1. The second iteration of the cylinder begins at

time 6. Task a executes again as shown by the increase in its index from 0 to 1. Since task

e is dependent on tasks b and c, it can now begin execution. Since it is for iteration 0 of the

graph, it has an index of 0. At time 7, task f still cannot begin since it is dependent on e

which has not finished. The figure shows that f executes during the next iteration of the

graph. This illustrates how each iteration of the cylinder contains tasks belonging to

different iterations of the graph. It also shows how the cylinder works. As time progresses,

the cylinder turns. If the task that is on the cylinder at that time can begin, it is executed. If

not, That task waits until the next time the cylinder reaches that point an executes then if it

can.

3. Summary

Many methods of mapping tasks to processors have been developed. Most of these

attempt to minimize the completion time of the application as opposed to maximizing the

throughput. The one that does have the goal of maximizing throughput does not take into

account system topology or resource contention.

C. PS HEURISTIC

The goal of the PS heuristic developed by Kasinger [KAS 94] is to maximize the

throughput of an executing process since the processes which are of interest are repetitive

in nature. This way, the maximum number of iterations of the process may be completed

in the minimum amount of time. While this may lead to a longer completion time for any

one particular instance, this is only a concern if there are real time constraints for

completion time.

11

a 0
a. Co 6

0 1 ~2 5 _,
1 2 2 3 3 4 4 5

Time-->

.....
............ ..

-- -4-

45 9 7 1
5 6 6 7 7 8 8 9

Time-->

.. .e 0

--
C1 a. C1 bj a.CI a2 A4 bj a fo

C 1 C1 b 2
8 ~~ 191111 14

9 10 10 11 11 12 12 13

Time->

13 14 14 15e 15 1616,

Time-->

Figure 4: Revolving cylinder schedule applied to task graph in Figure 3.
From [AMI 931.

12

Kasinger's PS heuristic uses the characteristics of revolving cylinder to schedule

successive instances of the task graph. PS differs from revolving cylinder in that it is

designed for a distributed memory multiprocessor and a specific heuristic is used for

assigning tasks to processors. This heuristic considers communications, contention, and the

interconnection network between processors in making its assignment of nodes to

processors. The PS heuristic can be used for scheduling task graphs on systems with any

system topology and any processor speed.

1. Processor Selection

The goal of the PS heuristic is to maximize the throughput of a repetitive task graph.

This goal is accomplished by scheduling the nodes of the task graph to the processors of

the system in such a way that the maximum usage of the system's resources is minimized.

These resources consist of the processors and the communication links connecting them. A

Processor Utilization Table is used to hold information on the level of utilization of the

processors and a Link Utilization Table contains information on the utilization level of the

communication links. [KAS 94]

The Processor Utilization Table is simply an array that consists of one array element

corresponding to each processor in the system. The Link Utilization Table is a two

dimensional matrix. Each row and column of the matrix corresponds to a link between to

processors in the system. If no link exists between two particular processors, the

corresponding matrix location is unused. [KAS 94]

The PS heuristic works in the following way. When a task is ready to run, the task and

copies of both utilization tables are passed to the PS procedure. Copies of the utilization

table are used in testing different processor assignments for the task. The task is tested on

each processor in the system. The Processor Utilization Table is updated to reflect how the

assignment of the task to the given processor affects the utilization level of that processor.

[KAS 94]

13

Since the ready task may have predecessors that are assigned to a different processor,

the Link Utilization Table must be updated to reflect the communication that will be

necessary using this processor assignment. After all communication requirements are

added to the Link Utilization Table, the tables are search to find the maximum utilization

of any resource. This information is stored and used to compare against other processor

assignments for the task. The first "best" mapping is the one selected. This means that the

task will be assigned to the lowest numbered processor of the ones with lowest maximum

resource utilization. [KAS 94]

This procedure is repeated for each task in the task graph. The Processor Utilization

Table and Link Utilization Table are updated to reflect the assignment of all tasks that have

been previously assigned to processors. As a new task in the graph is ready to run, PS is

executed with the new utilization tables. [KAS 94]

2. Instance Overlap

Kasinger's PS heuristic uses the revolving cylinder technique to maximize the

throughput of repetitive applications. The use of the revolving cylinder technique allows

for the possibility of overlap in the execution of instances of the task graph. By overlapping

instances of the task graph, different processors may be working on different instances of

the graph at any given time. This feature allows us to more efficiently utilize the processor

of the system.

After PS has determined the processor assignment for the tasks of the graph, the task

is assigned to the processor at the earliest time that it is available. This has the effect of

compacting the execution closer to the start of the cylinder which leads to a shorter

execution time for one revolution. Since precedence relationships may exist between tasks,

compacting the tasks may cause tasks that rely on data from other tasks to be scheduled

before the data is available. When this occurs, each cylinder revolution contains tasks that

belong to different instances of the task graph. [KAS 94]

14

In order to account for different instances of the task graph executing during each

iteration of the cylinder, indices must be assigned to the nodes. These indices represent

which instance of the task graph the nodes belong to. This comes from an analysis of the

precedence relations between the tasks. [KAS 94]

3. Example

An example is provided to illustrate how PS works. The task graph in Figure 5 has been

scheduled using PS on a four processor ring and the resulting schedule is shown in the Gantt

chart in Figure 6. The resulting processor utilization and link utilization are given in Figure

7.

As can be seen from the Gantt chart, the throughput of this task graph is 6 time units.

This means that every 6 time units, a new iteration of the task graph can be initiated, and a

previous iteration completes execution. By examining the indices of the tasks, the latency

of one iteration of the task graph can be determined. Task A is the starting task in the graph

and it has an index of i-2. Task G is the last task to be executed and has an index of i+1.

This means that any instance of the task graph will complete execution after four cylinder

iterations from when it began. Since the length of the cylinder is 6 time units and task G

finishes at 3 time units, the latency of this task graph is 21.

3

Figure 5: Sample task graph. From [KAS 94].

15

Time Processors
P1 P2 P3 P4

A
1 i-2 B C D

2 F - I
G

3 E

4

5

6

Figure 6: Gantt chart for schedule developed with PS. From [KAS 94].

P1 P2 P3 P4 P1 P2 P3 P4

5 6 3 2 P1 3 3

Processor Utilization Table P2 2 1

P3 1 0

P4 1 0

Link Utilization Table

Figure 7: Processor Utilization and Link Utilization tables produced by PS
for scheduling task graph in Figure 5. From [KAS 94].

16

III. HARDWARE AND SOFTWARE CHARACTERISTICS

A. INMOS TRANSPUTERS

"Transputer" comes from the words Transistor Computer. It is a microcomputer with

its own local memory and link that enable one Transputer to be connected to others.

A typical Transputer is a single chip containing a processor, memory, and

communication links that provide point-to-point connection between Transputers. In

addition, each Transputer contains special circuitry that allow it to be adapted to a particular

use. An example of this would be a peripheral control Transputer such as a graphics or disk

controller. [INM 89]

Transputers can be connected in a network or used in a single processor system.

Through the use of the communications links, it is an easy task to connect a group of

Transputers into a network. Using the Transputer in a single processor system is just as

simple as ignoring some of the communications links.

1. General Information

The Inmos Transputers that are used in this research are the IMS T800 Transputers.

These processors consist of the CPU, four link interfaces, on-chip RAM, and a memory

interface. The link interface supports a standard link communications frequency of 10

Mbits/sec. Each Transputer supports concurrent execution through a microcoded

scheduler. [INM 89]

Communications in the Transputer are point-to-point, unbuffered, and synchronized.

This means that all communications are "blocking", both the sender and receiver must be

ready to communicate or the processes waits. The communications are handled by means

of channels. A channel between processes on the same Transputer is implemented as a

single word in memory. Channels between Transputers are established on the point-to-

point links. [INM 89]

17

2. IMS T800

The T800 Transputer is a 32 bit microprocessor. It has 4 kbytes of on-chip static RAM

memory and supports 4 Gbytes of directly addressable external memory. Its

communications links operate on the standard 10 Mbits/sec frequency, and also support 5

and 20 Mbits/sec communications. A 64 bit floating point unit is also located on chip for

floating point calculations. A block diagram of the T800 is shown in Figure 8. [INM 89]

Processes running on the T800 can run at either priority 1 (low), or priority 0 (high).

High priority processes are expected to run for only a short period of time. If multiple high

priority processes are ready, one is selected and runs until it is waiting for communications,

a timer input, or completes. If no high priority processes are able to proceed, a low priority

process is selected. Low priority processes are time-shared to provide an even distribution

of processor time. [INM 89]

3. IMS B003

The Inmos B003 Transputer board is a board that consists of four Inmos Transputers.

These Transputers can be of any type desired. They are hard mounted on the board in a four

processor ring configuration [INM 86].

The ring configuration on the board is established by hard-wiring a communications

port from one Transputer to a communications port of another. These hard-wired links

cannot be disconnected. The connection scheme that is used to connect the Transputers is

to establish a link between the number two communications port of each Transputer and

the number three port of the respective successor Transputer. In other words, Transputer

zero's number two port is connected to Transputer one's number three port and so on.

Transputer zero is considered to follow Transputer three in the ordering. This configuration

is shown in Figure 9. [INM 86]

18

Floating Point Unit

32 BIT

System 32 BIT 32 Bit

Services " Processor

Link I

Services

Timers 32 BIT Link
SiInterface

32 BIT Link
4K tes 32 BIT Interface
On-chip •[JM 32 BIT Link

RAM Interface

32 BIT LinkI

External 32 BITInefc
Memory -a•[
Interface Event

Figure 8: Block diagram of the IMS T800 Transputer. From [INM 89].

19

LI LO

L0 TO L2 L3 T1 LI

L3 L2

L2 L3

L1 T3 LU L2 T2 LO0

LO L1
I I

Figure 9: IMS B003 ring configuration. From [INM 861.

Connections using the other communication ports, either between processors on the

same board or processors on other boards, is made by using wire jumper links to manually

connect the ports [INM 86]. These connections can be used to create any processor

configuration using any number of Transputers. Figure 10 shows a block diagram of the

link connection pins for the unconnected links.

When more than one board is used, reset signals for the board must also be sent to all

boards being used. This is done by connecting the "down" port of each board to the "up"

port of each successive board. Any number of boards can be daisy chained together in this

manner. [INM 86]

20

C B A

Power

TOLO TOLl TILO

T2LO T2Ll T3LO

TILl

T3Ll
Up Down

Figure 10: IMS B003 pin connectors. From [INM 86].

21

4. IMS B004

The Inmos B004 Transputer board is a board that is mounted internally in a DOS based

computer. This board is used to give the DOS computer access to the Transputer system so

that it can function as the host machine for the Transputer. The board has one T414

Transputer hard mounted [INM 85]. A block diagram of the B004 Transputer board is

shown in Figure 11.

I Reset Reset Reset

SAnalyze Analyze Up Down Analyze
Error Error

Buffered
Link

SubSystem Analyze
SError

Buffer and Address [pDeCo d

DRBM PCA

T41

_ _ _S I _ __ __ __ _

Interface

Figure 11: Block diagram of the IMS B004 board. From [INM 85].

The DOS computer is connected to the Transputer system by using a wire link jumper

to connect the PC link port on the B004 board to the zero link of the boards T414

Transputer. Reset signals are sent from the PC to the Transputer system by connecting the

PC system port to the up port on the B004 board. This is done using the wire reset jumper.

Figure 12 shows a block diagram of the connector pins for the board. [NM 85]

22

Subsequent boards in the system are added by connecting the number one, two, and

three links of the boards T414 Transputer to links of other Transputers in the system. Reset

signals are sent to the other Transputer boards by connecting the B004's down port or

subsystem port to the up of the up port of the next board. The boards are then daisy chained

together. The difference between the down port and the subsystem port is that the down

port will cause all boards to be controlled by the PC where the subsystem port will allow

other boards to control its' own system of boards. Daisy chaining of Transputer boards is

shown in Figure 13. [INM 85]

The T414 Transputer can be bypassed on the B004 board through the use of two

ground wires. Pin b6, the NotLink pin, is connected to pin a13, the GND pin. Pin b27, the

NotSystem pin, is connected to pin a17, the GND pin. This enables the T414 processor on

the B004 board to be bypassed so that the PC can be directly connected to a Transputer in

the system. This enables the system to consist entirely of one type of Transputer since the

B004 board is always fitted with a T414 Transputer. Figure 14 provides a description of the

B004 board connection pins and indicates the proper connections to achieve this. [DUN 94]

23

a b

PCLink D I
LinkO L @inkl

Component Side Solder Side

Link 2 Link 3

PCSystem SubSystem

Up Down

Figure 12: IMS B004 pin connectors. From [INM 85].

Master Board

Up Down
Up J

Down Down

Reset
Up

Jumper

Figure 13: Daisy chaining of subsequent boards. From [INM 85].

24

Pin b a

1 GND NC
2 (missing) (missing)

Tns 3 PCLinkOut NC
To Transputer 4 PCLinkIn NC
Link 0 5 GND NC

6 NotLink NC
7 GND GND
8 (missing) (missing)
9 LinkOut 0 LinkOut 1
10 LinkIn 0 Linkln 1
11 GND GND

12 (gap) (gap)
13 GND GND
14 (missing) (missing)
15 LinkOut 2 LinkOut 3
16 Linkln 2 Linkln 3
17 GND GND

18 (gap) (gap)
19 (gap) (gap)
20 (gap) (gap)
21 (gap) (gap)

S22 PCNotReset SubsystemNotReset
23 PCNotAnalyse SubsystemNotAnalyse

To er 24 PCNotError SubsystemNotError
Board Up 25 GND GND (missing)

26 (missing) (missing)
27 NotSystem f NC
28 UpNotReset DownNotReset
29 UpNotAnalyse DownNotAnalyse
30 UpNotError DownNotError
31 GND GND (missing)
32 GND (missing) GND (missing)

Figure 14: B004 board pin connectors with connections for bypassing
mounted T414 Transputer. From [DUN 94].

25

B. PARASOFT EXPRESS

The Parasoft Express software is a parallel programming tool that provides message

passing features which enable the user to create parallel applications. It cooperates with the

existing operating system to provide a familiar environment to the user. It is through this

environment that Express allows the user to access the parallel processing system. [PAR

90]

Express is itself not a programming language for parallel systems. Rather, it provides

compilers for various existing programming languages that utilize libraries that provide

access to the parallel features of the system. [PAR 90]

The Express kernel provides the basic functionality that is needed by parallel

programs. Once the kernel is loaded, the system can utilize Express communications

primitives to allow the processors to work together. These primitives include both high and

low level message passing. The kernel also provides various parallel programming tools

such as a performance analyzer, a debugger, multitasking features, and parallel graphics.

1. System Configuration

In order for the Express kernel to operate properly, it must know the configuration of

the system. This is done through the use of a utility called "cnftool". This utility creates files

that are used by the kernel to establish routing and send reset signals. The files contain a

description of the interconnection between the processors in the system, information about

the way in which reset lines are connected, and message forwarding information. [PAR 90]

Express uses a specific terminology to describe the parallel processing system. This

terminology will be used throughout the description of Express. The PC that the Transputer

system is connected to is referred to as the host. It runs a program known as the host

program. Each processor in the parallel system is referred to as a node and the programs

that run on these processors are node programs.

When "cnftool" is run, a "worm" can be run which will detect all mechanical links that

are present in the current system. This can be used of the configuration can be plotted

26

manually, If a link that is specified in the information files is not present in the system, the

system will fail to work properly. The worm can be used to avoid this problem. [PAR 90]

The worm cannot detect links that are provided by a C004 switch. These links must be

manually entered using the "cnftool". [PAR 90]

Once the nodes and links of the system are configured, a forwarding table and reset

tree must be created. The forwarding table creates a routing scheme that will be user by the

system. Express offers three choices, hypercube, torus, and general. The hypercube and

torus options will ensure routing such that deadlock will not occur. The general routing can

be used for all configurations that are neither a hypercube nor a torus. This will provide

routing using shortest path and is not guaranteed to be deadlock free. The routing of the

system is static. In other words, once the kernel has been loaded to the system, the routing

path between any two nodes is fixed according to the established forwarding table. [PAR

90]

2. Communications Functions

The Express programming model used for this thesis is the host-node model. The host

PC runs a program that communicates with the programs running on the nodes of the

parallel system. This results in the host program having access to the features of the host

machine, while the node programs have access to only those features provided by the

parallel system. This means that all I/O must be performed by the host program with data

being sent to or received from the node programs. This model also provides the ability of

different node programs being executed on the various processors of the system

simultaneously.

In order to utilize the host-node programming model, the user must write a host

program that performs the functions which will control the node programs. These function

include processor allocation, program loading, and communications with the nodes for I/O

functions.

27

a. Processor Allocation

Processor allocation is achieved using the "exopen" function. This function

allocates the number of processors requested, if available, to the requesting host. The

function assigns an index to a group of processors which distinguishes them as being

allocated to a particular host. These processors can then be loaded with node programs by

the host. [PAR 90]

b. Loading Programs

The node programs are loaded by using the "exload" or "expload" functions.

These functions load the node programs onto the designated processors. The "exload"

function loads all processors in the group with the designated node program. The "expload"

function is used to load different node programs on the processors in the group. "Expload"

loads a given processor with a designated node program. This function can be called

multiple times enabling each processor to be loaded with any node program desired. While

"Expload" can be called multiple times, multiple calls to "expload" will result in the second

node program to be written over the first. [PAR 90]

Once the node programs are loaded, they must be given a command to begin

execution, If the "exload" function is used, all node programs will begin execution after

they are loaded. If the "expload" function is used, a separate function must be used to start

execution of the node programs. This is done through two functions, "exstart" and

"exmain". "Exstart" is used to load additional arguments to the node programs. It can be

used to load arguments to any or all loaded node programs. Once the arguments are loaded,

a call to "exmain" tells the node programs to begin execution. This can be used to start

execution of any or all node programs. [PAR 90]

c. Message Passing

While the processors are executing their node programs, the programs will need

to communicate with each other and the host. The Express kernel is based on an

asynchronous, point-to-point message passing system. This allows a message to be sent

28

from any node to any other node and the kernel is responsible for buffering and routing of

messages. Since the Transputers themselves do not support asynchronous message passing,

the Express kernel provides it. Asynchronous message passing is provided through the

functions "exwrite" and "exread". [PAR 90]

These two functions are the basic communications functions for a packet

switched communications system. The system breaks messages into fixed size packets are

transmits the packets to the receiving Transputer. Packets are also referred to as blocks. The

packet size can be set as the user wishes with the smallest size packet being 1024 bytes. For

this Thesis, the packet size is set to 1024 bytes. If a message cannot be divided into full

packets, the last packet will be smaller than a full packet. In other words, Express does not

pass pad a message to send a full packet. [PAR 90]

The number of buffers available is also selectable by the user. Each buffer is the

same size as a packet. Therefore, if a message is larger than one block, it will require more

than one buffer to store it. While the number of buffers is set by the user, the memory

needed for the buffers is taken from system memory, so assigning more buffers will reduce

the amount of memory available to a node program to run. [PAR 90]

The "exwrite" function is non-blocking and sends a message from the calling

node to the designated node. This function allows any number of bytes to be transferred and

allows these bytes to be assigned a "type". This type is an integer assignment that has no

relation to standard data types. It is simply a tag that the system assigns to a message to

distinguish it when it is received. The routing the message takes is provided by the Express

kernel and the message is buffered by the kernel until that processors node process is ready

to read it. [PAR 90]

Messages traverse one or more communications links when being sent from one

node to another. The route between any two nodes is assigned when the system is

configured. This routing is fixed so that only one predetermined route between two

processors is used. This route is determined through a shortest path algorithm. The

configuration tool examines all possible routes between processors and then picks the

29

shortest possible route. In some cases, there is more than one route with the shortest length.

In this case, the kernel picks the route at random. [HIC 95]

The "exread" function, unlike "exwrite", is a blocking function that receives a

given number of bytes from another node. The function scans the message buffer that the

Express kernel provides to determine if the node has received an appropriate message. A

message is deemed appropriate if it came from the expected node and is of the right "type".

This is where the type of the message is significant. A message can be given a type so that

it can only be read by a specific "exread" call. If there is more than one message that meets

the sender and type requirements, the first message to arrive is chosen. The message length

is insignificant in the selection of an appropriate message. If the message is too long, the

extra bytes are discarded. If the message is too short, the read is completed with the smaller

message. [PAR 90]

Since Transputers only provide blocking reads and writes, the Express kernel is

designed to allow writes to occur even when there is no process ready to receive the

message. Express does this through the use of daemons. Each Transputer has a daemon

running for each link which looks for incoming messages and stores them in a buffer. When

the running process executes a message read, the buffer is checked for the appropriate

message. [HIC 95]

Sending and receiving messages between the host processor and node processors

requires some extra considerations. While the same functions are used to send and receive

messages, since the nodes are one type of processor and the host is another, type sizes and

byte ordering must be considered. This is usually not a problem in node to node

communications since the nodes are usually identical or similar processors.

Since different processors uses different sizes for the various basic data types,

this must be considered in the function call. If the host is sending a message that contains

a certain data type that is represented by two bytes, and the node uses four bytes for that

data type, the receiving processor will be expecting a different number of bytes than are

sent. This could result in meaningless data being received.

30

Likewise, the order that bytes are stored can also cause problems. If the host

processor uses big endian notation and the nodes use little endian notation, or vice verse,

the bytes will be received in the wrong order. Express does take this into consideration and

provides functions that perform byte swapping to rearrange a message either before it is

sent or after it is received [PAR 90].

A non-blocking read can be established through the use of the "extest" function.

This function looks in the message buffer for a message from a given node and of a

specified type. If a suitable message is found, the function returns the length of the message

found. If no suitable message is found, the function returns a negative value. By calling this

function prior to any reads, it can be determined if a suitable message is currently in the

buffer. If not, the program can continue execution and call "exread" at a later time. This is

only of use, of course, if the data in the expected message is not immediately needed. [PAR

90]

d. Additional Communications Functions

Other communications functions are available that utilize the Express kernel.

These provide broadcast communications, message concatenation, file reads and writes, in

addition to other functions.

Express also provides communications functions which allow the user to route

the messages along whichever Transputer port he desires. These functions, "exchanrd" and

"exchanwt", send a specified number of bytes along the specified Transputer link of the

node. These functions do not provide message typing as the "exwrite" and "exread"

functions do. These functions are also synchronous. This requires that the receiving node

must be reading the appropriate channel while the sending node is writing to it. Since no

routing is provided, the messages may only be sent to the nearest neighbor and that node is

then responsible for passing the message on. [PAR 90]

31

e. Multitasking

Multitasking is also provided by the Express kernel. This is provided by a

message handler function called "exhandle". This function is a non-blocking read function.

"Exhandle" is designed to scan the message buffer for a message from a designated node

and of a designated type. If an appropriate message is found a function designated by the
"exhandle" function is executed as a separate thread. If no appropriate message is found,

the program continues execution as if the "exhandle" call never happened. Express also

provides semaphores to allow the user to set up mutual exclusion for variables. [PAR 90]

3. Familiarization Testing

Several different test programs were written and run in order to determine the various

characteristics of the Express message passing system and the Express kernel. Some tests

only varied from previous tests in scale. That is, only the number of processors being

utilized was changed.

a. Simple Message Passing

The first group of tests were performed in order to get an understanding of how

the "exread" and "exwrite" functions execute. In the first test, a message was sent from the

host to processor zero. This message contained an integer. It was then added to a constant

and the result sent back to the host. The type of the message was set to a constant. This

initial test was performed to ensure that the message would actually get to processor zero,

be read correctly, and the correct result would be returned.

After this was determined to be working correctly, an additional processor was

introduced. The test remained the same, except that the result of the addition was sent to

processor one, where it was multiplied by a constant, an then returned to the host. This was

performed to ensure that the processors of the system would properly send messages to one

another.

Next, a third processor was introduced. This test had two processors receiving a

message containing an integer from the host. These processors added a constant to the

32

received integer and both then sent it to the third processor where the two were multiplied

together. The result was then sent back to the host. This tested the processor's ability to

receive multiple messages simultaneously.

The problem was then increased to four and finally five processors to ensure that

no problems would be encountered when adding more processors.

b. Changing Message Types

Once it was determined that extra processors could be added without

complication, the message typing system was tested, The five processor test was again run,

except this time the type of the message was set differently depending upon which

processor the message was being sent to. Each node program would receive a message with

type set to a specific value (100 for processor zero, 101 for processor one, etc.). It would

then send messages to other processors using the receiving processors assigned type. This

tested the ability to change types as the user desires and that message types could be used

to distinguish between messages. This was attempted sending messages with incorrect

types and these were not received.

c. Sending and Receiving Multiple Messages

Another test was performed with slightly more message passing to determine

how complex a programs message passing could get. Messages were sent back and forth

between nodes, and to multiple nodes. This had no effect on the reception of the messages

as all messages were received properly. This leads to the conclusion that as long as the

programmer takes care to ensure that functions to send and receive messages are properly

used, message passing can be as simple or complex as the program needs.

d. Sending Messages Internally

The ability of a node to send a message to itself was tested. A message was sent

from a node program to itself using the "exread" and "exwrite" functions. This worked in

identical fashion to sending messages from one node to another. Since the PS heuristic

33

occasionally requires nodes processors to contain several node programs, this feature was

tested to ensure that these instances would not require special handling.

e. Non-blocking Reads

The "extest" function was tested next. The three node program used before was

used, except that the "exreads" in the multiplication were replaced by a loop with "extests".

This loop continuously tested the buffer for received messages. Once two were received,

the loop terminated and the multiplication was performed. This tested the use of the

"extest" function as a non-blocking read.

f. Multitasking

The message handler "exhandle" was tested to ensure proper functioning. A

node program was written which had an addition and a multiplication function written.

When a message was received of one type, the addition would be performed. If the message

was of another type, the multiplication was performed. The program was run having the

host send various messages to the node to ensure that the proper function was executed.

This worked as expected.

g. Program Loading

The ability to load two node programs on one processor was also tested. It was

attempted to load two programs on one node to see if both would run. The first attempt

resulted in the program not properly executing. Since no output was received, the cause of

the problem could not be determined. The program was run again, this time using two node

programs that only received a message from the host and sent a unique message back to the

host after receiving the message. This was tested by having the host send a message to each

node program and seeing what was returned. The node program that was loaded last always

was the only one to return a message. This indicates that the program that was loaded last

is the only one that the node processor recognizes.

34

h. Program Looping

Two tests were run to check program looping. One tested using loops in the node

programs and the other using loops in the host. When loops were used in the nodes, to

simulate multiple execution of the program, as long as the loops were designed so that each

node program was executed the same number of times as the others, the program executed

properly. When the loop was moved to the host program, it was noted that the node

programs had to be reloaded when their execution had completed. The node programs

could not just be restarted. These tests indicate that for programs where multiple iterations

of the program are needed, it is more efficient to have each node program use a loop than

have the host program loop.

i. Message Reception Order

The last group of tests were performed to determine if the order of message

reception had an effect on how the node program would read them. These tests utilized the

two node program used earlier, except that the multiplication was modified to read a

message from both the addition node and the host.

In the first test, the message from the host was delayed so that the message from

the addition was ensured of being received first. The multiplication was written so that it

tried to read the message from the host first. This program ran with no problem, indicating

that the order that messages a received is unimportant.

Next, the multiplication node program was loaded, but not executed, until after

the messages were sent to it. The node was then started. This also had no problems running.

Finally, the multiplication node was not loaded, until after the messages were sent to it.

This program did not work. This leads to the conclusion that as long as the node has been

loaded, when the message is sent to the node is unimportant.

4. Communications Model

During performance testing, the main goal was to determine the effects of various

message passing schemes on the Transputers performance. Many different tests were run

35

with each varying the test parameters slightly. An Express function, "extime", was used to

time the required sections of the programs execution. This function returns time in

microseconds and is accurate to 64 microseconds. This is due to the clock tick that is used

for time measurement occurs every 64 microseconds.

Since different processors store basic data types in different manners, the Transputer

was checked to determine how many bytes were utilized in storing the basic data types. By

using the "sizeof' function in the C language, it was found that characters are 1 byte, short

integers, integers, long integers, and floating points are 4 bytes, and double precision

floating points and long double precision floating points are 8 bytes. This data was needed

in order to determine the length of messages that were passed between processors during

test runs.

Due to the inherent inaccuracies of the timing functions, executing one message send

or one message receive would be susceptible to inaccurate timing. In order to avoid this, all

communications tests were conducted using a loop of 1000 iterations. The loop overhead

was determined and found to be an average of 2060.8 microseconds. This was determined

through 5 runs of a loop containing no function calls. All other test runs were run 5 times

and the results averaged. The results were then adjusted for the loop overhead and divided

by 1000 producing the time to execute one iteration of the test case.

a. Message Passing Testing

The first group of experiments was designed to test the message travel time of

various sizes of messages across a varied number of links. The Transputer system that was

used for these tests was an eight processor hypercube. In doing these tests it was desired to

learn how the time was affected by increasing the length of the message and also by

increasing the number of links traversed.

The programs that were designed for these experiments consisted of a sender

node and a receiver node. The sender node consisted of a 1000 iteration loop that sent a

message of a given size to the receiver node and then received the message back. The

36

receiver node consisted of a similar loop except that it listened for he message from the

sender and when it received it, sent it back. The receiver node was placed on a particular

processor so that the message would traverse a predetermined number of links. Since the

messages traveled to the receiver and back, the total time was divided by two to yield the

message send time. This is depicted in Figures 15, 16, and 17.

exwrite to 1 exread from 0

Processor Processor

0 0

exread from 1 exwrite to 0

Figure 15: Message passing test for one link.

exwrite to 2 exread from 0

exread from 2 exwrite to 0

Figure 16: Message passing test for two links.

37

exwrite to 3

exread from 30

exread from 0

exwrite to 0

Figure 17: Message passing test for three links.

Many different message sizes were tested. These sizes were selected to

determine time required to send a byte of data and determine the effect of sending more

than one block of data. These were tested for traversal of one, two and three links. The

resulting times are shown in Table 1.

Message passing was attempted using different message types with the same

number of bytes. Arrays of characters, structures of different data types, arrays of integers,

and arrays of floating points were setup to total the same number of bytes. The messages

were passed and it was noted that the data types used had no effect on the resulting message

passing time. The time was the same regardless of the data type.

As can be seen by looking at each column of the table, as the number of bytes in

the message increases, the time for the message to traverse the communications path

increases. In order to determine if there is a regular pattern to the time increase, an equation

38

can be generated to model the message sending process. The linearity of the

communications times, as seen in Figure 18, suggests that a pattern exists.

Number of 1 Link 2 Links 3 Links

Bytes Traversed Traversed Traversed

1 byte 303.6416 373.9776 445.2864

4 bytes 307.6352 382.0672 457.0176

8 bytes 312.3072 391.3408 470.656

40 bytes 353.1968 468.0128 582.8224

80 bytes 401.3696 559.3984 718.3552

160 bytes 449.4144 745.5169 992.5184

1000 bytes 1531.84 2701.824 3871.872

1024 bytes 1562.08 2758.08 3954.688

1025 bytes 1717.44 2914.4 4111.136

1536 bytes 2345.02 3975.81 5172.16

2048 bytes 2973.76 5168.192 6364.8

2049 bytes 3130.144 5324.48 6520.832

2560 bytes 3757.89 6388.67 7585.15

3072 bytes 4386.85 7581.44 8777.12

3073 bytes 4543.01 7737.44 8933.82

3584 bytes 5170.02 8801.54 9997.66

4096 bytes 5799.552 9993.568 11189.888

4097 bytes 5955.392 10150.016 11346.528

Table 1: Communications times (in microseconds).

39

Microseconds (Thousands)

12

10......................................----- -----

------- ------ ------ ------- ------ -. ---- -. . -. -.....

-1 Link
6 t -- - -- - -- - - -- -- - -- - - -- - - -- - - -- -2 Lin ks

-3 Links

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Number of Bytes

Figure 18: Communications times.

The pattern that arises consists of four basic parts. The overhead associated with

the send command itself, the overhead per block, the overhead for each node the message

passes through, and the transmission time of each byte. As can been seen from the graph,

the byte transmission time takes on different values depending on what block it is

associated with and how many nodes the message is traveling. A model for the system is

given in Equation 1.

Time = Ti + (TbI x blocks) + (TbyI x bytes) for first link

+ Tn + (Tby 2 x bytes) for first block of 2nd link

+ (Tby 3 x bytes) for subsequent blocks of 2nd link

+ Tn + (Tby 2 x bytes) for each addl. link, max. 1 block (Eq 1)

T. = 150R.s Tbl = 155gs Tn = 70gs

TbY1 = 1.227ts Tby 2 = 1.1gs Tby3 = 0.977gs

Ti represents the overhead due to the instruction call. This is overhead that is

incurred to simply make a message read or write function call. It is an overhead that is

40

associated with every message sent. Tbl is the overhead associated with each block of the

message. Tn is the overhead associated with every node the message passes through.

The byte transmission times are Tbyl, Tby2, and Tby3. Even though transmission

of a byte should take the same length of time no matter what link it travels on, the times

observed yielded three different times depending on which block of the message was being

transmitted and whether it was the first, second, or a subsequent link that the block was

traversing. This is most likely due to pipelining in the system which allows some

overlapping of the per byte time.

Equation 1 shows that there are five different cases to be considered in message

passing. These are messages traversing one link, single block messages traversing multiple

links, multiple block messages traversing two links, single block messages traversing more

than two links, and multiple block messages traversing more than two links.

For a message traversing one link, the first part of Equation 1 is used. Suppose a

message of 2048 bytes traversed one link. The resulting message passing time would be

found as in Equation 2.

Time = Ti + (Tbl x blocks) + (Tby1 x bytes)

= 150 + (155 x 2) + (1.227 x 2048) (Eq 2)

= 2972.896gs

Equation 3 describes the calculation of a message of 1000 bytes traversing two

links. This is an example of the second case, a single block message traversing multiple

links. The second line of Equation 1 is needed in this calculation.

Time = Ti + (Tbl x blocks) + (Tby1 x bytes)

+Tn + (Tby2 x bytes)
(Eq 3)

= 150 + (155 x 1) + (1.227 x 1000) +70 + (1.1 x 1000)

= 2702gs

For the third case, multiple block messages traversing two links, the third part of

Equation 1 is needed. Equation 4 shows the calculation of a 2048 byte message traversing

two links.

41

Time = Ti + (Tbl x blocks) + (TbY1 x bytes)

"+ Tn + (Tby2 x bytes(first block))

"+ Tby3 x bytes(addl. blocks) (Eq 4)

= 150 + (155 x 2) + (1.227 x 2048) + 70 + (1.1 x 1024) + (0.977 x 1024)

= 5169.744ps

Case four is single block messages traversing more than two links. The example

given is a 1000 byte message traversing three links. The fourth line of Equation 1 is used

for this case. Equation 5 shows this calculation.

Time = T + (Tbl x blocks) + (Tby Ix bytes)

+ T± + (Tby2 x bytes)

+ Tn + (Tby2 x bytes) (Eq 5)

150 + (155 x 1) + (1.227 x 1000) + 70 + (1.1 x 1000) + 70 + (1.1 x 1000)

3872gs

The fifth case is multiple block messages traversing more than two links. This

case uses the restriction placed on the fourth line of Equation 1 that only the first block of

the message figures into the message passing time for links traversed after the first two. The

calculation for a 2048 byte message traversing three links is given in Equation 6.

Time = Ti + (Tbl x blocks) + (Tby1 x bytes)

"+ T + (Tby2 x bytes(first block))

"+ Tby3 x bytes(addl. blocks)

"+ Tn + (Tby2 x bytes(first block)) (Eq 6)

= 150 + (155 x 2) + (1.227 x 2048) + 70 + (1.1 x 1024)

+ (0.977 x 1024) + 70 + (1.1 x 1024)
= 6366.144Rs

Finally, if a message needed to travel over more than two links, only a maximum

of one block of data added additional per byte time. This is also most likely caused by

pipelining. In this case, different blocks of the message can be traversing different links of

the route at the same time. This would cause the results that were observed.

One other related test was performed to examine the affect of breaking a

message into parts and sending each part individually. For this test, the forty byte message

42

was broken into four ten byte messages and each of the ten parts were sent one after

another. The resulting average time was 2389.3696 microseconds when traversing one link.

When comparing this to sending the message whole, it is quite obvious that splitting the

message into parts is much worse due to a large increase in overhead.

b. Internal Message Passing

Since the PS implementation may need multiple tasks to be mapped to one

processor, message passing from a node to itself was tested. The same send and receive

loop was again used except the receive function was set up to receive a message from itself.

The resulting times are shown in the Table 2.

Number of Time
bytes

1 Byte 369.0752

4 Bytes 368.8576

8 Bytes 370.1632

40 Bytes 378.1248

80 Bytes 389.4912

160 Bytes 409.792

Table 2: Communications times for internal message passing (in microseconds).

It can be seen from the table, increasing the size of the message increases the

time slightly. This time does not increase in proportion to Tb found before since the

message does not traverse any links. Also, comparing these times to the message times

found previously seems to indicate that it takes longer for a message to be sent to itself than

to send it to another node in some cases. This is most likely caused by the test loop. Since

the "exread" function cannot be called until the "exwrite" has completed since they are part

of the same program, this most likely accounts for the longer times observed.

43

Since no links are used when a Transputer passes a message to itself, it would

seem that passing the message internally would take far less time than passing it to another

Transputer. The data shows that this is not the case. The most likely cause for this is time

required to execute the Express read and write functions, overhead time for preparing the

message, and time used to search the buffer.

c. Routing Delays

The last set of experiments tested the affect of messages passing through a node

that has a process currently running. These tests attempted to determine if the running

process, the message being sent, or both were affected.

A message of 160 bytes was sent in the same fashion as before to a node such

that it passed through one and two nodes. These nodes contained a process that consisted

of an infinite loop. The average times observed for the two tests were 747.2064

microseconds and 995.6224 microseconds respectively. When compared with previous

results, it is shown that the running process had little to no affect on the message

propagation time. Figure 19 shows a depiction of this test.

exwrite to 2 exread from 0

exread from 2 Process Running exwrite to 0

on Processor 1

Figure 19: Test for effect of routing on computation.

Next, the affect on the running process was examined. A process that consisted

of a loop that executed an addition operation was timed with no messages passing through

44

the node and then timed again with a message passing through. The execution times are

shown in Table 3.

Number 4 byte 40 byte 1024 1025 2048 2049
of messages messages byte byte byte byte

Messages messages messages messages messages

0 560.896 560.896 560.896 560.896 560.896 560.896

10 561.920 561.984 563.968 565.056 567.040 568.192

20 563.008 563.136 567.040 569.216 573.312 575.424

30 564.160 564.352 570.176 573.440 579.456 582.720

40 565.248 565.504 573.248 577.600 585.728 590.016

50 566.336 566-720 576.384 581.824 591.872 597.312

Table 3: Process running times with messages passing through (in milliseconds).

By the times recorded, several observations can be made. Messages passing

through a node have an obvious effect on the process currently executing. The running time

of the process increased when messages pass through. Also, the increase in time is affected

by both number of messages passing through and the number of bytes, but not the number

of blocks the message is divided into.

By analyzing the numbers in Table 3, a pattern for the delay caused by messages

passing through a node is seen. Each message carries an associated delay with it in addition

to an additional delay for each byte the message contains. This is shown in Equation 7

where Tbl is the delay per message and Tby is the delay per byte.

Delay = TbI + (Tby x bytes)

(Eq 7)
TbI = 54gs Tby = 0-19S

Finally, the effects on communications for a node with messages passing

through was studied. A message passing loop was run on two processors with another

45

message passing loop passing messages through one of the executing nodes. This is shown

in Figure 20.

exread from 1
exwrite to 1

Processor

3

exwrite to 2 exread from 0

exread from 2 exwrite to 3 exwrite to 0
exread from 3

Figure 20: Test for effect of routing on communication.

The loop was timed first with no messages and then with a variety of messages

passing through. The results are shown in Table 4.

These results indicate that communications are affected by message forwarding

in the node. Furthermore, they show that the number of messages has a greater affect than

the number of bytes in the message. These results are similar to the ones found in the

previous experiment.

These findings lead to the conclusion that message forwarding takes the highest

priority of all functions executed by the Express kernel. Also, communications seem to be

affected slightly less than computation leading to the conclusion that communications is

higher priority than computation.

46

1000 Iteration Average
Communications Total Time

Loop

No passing 707.085ms
messages

50 messages, each 709.709ms
200 bytes

2500 messages, 741.350ms
each 4 bytes

150 messages, 715.059ms
each 200 bytes

150 messages, 712.832ms
each 4 bytes

Table 4: 1000 iteration communications loop times.

47

48

IV. RPS HEURISTIC AND PROGRAMMING TOOLS

The Realistic Periodic Scheduling (RPS) environment is a system which schedules a

process according to the RPS heuristic developed. It interprets the code written by the

programmer and composes source code that, when compiled, will execute the process

according to the generated schedule. This system requires the programmer to generate a

task graph and write source code for the nodes using the C programming language using

annotations to describe message read and write operations. The RPS scheduler and RPS

packager are both contained in one executable which schedules the program and then

packages the code. An additional tool, the RPS profiler, is also provided which profiles

code written to determine actual execution time of the code.1

A. RPS SCHEDULER

The scheduling portion of the system implements the RPS heuristic, which takes into

account various aspects of the Transputer/Express system. The programmer must provide

several information files, in proper format, for the system to properly schedule the process

on the Transputers. The RPS scheduler generates a schedule file that is used by the RPS

packager to generate source code and may also be used by the programmer to analyze the

schedule that has been assigned.

1. Transputer/Express System Model

There are several factors to consider when scheduling nodes to processors using Inmos

Transputers and the Parasoft Express software package. The PS heuristic considers

communications, resource contention, and the underlying interconnection network of the

system in determining the resulting schedule. It does not, however, consider effects of

message setup, processing overhead, and message transit time on processor utilization,

message forwarding by a processor, and actual routing paths utilized by the system. Each

1. This tool does not give communication time since the system is designed using the communica-
tion model shown in Chapter III.

49

of these has an effect, that cannot be ignored, on the execution time of the nodes of the task

graph. Additionally, input and output between the system and the outside world have

various effects on the system which can affect both the schedule or the overall execution

time of the program.

a. The Communications Model

Message setup time and execution time of message passing commands go hand

in hand when determining schedule length. In PS, each nodes execution time is determined

strictly by the computation time associated with that node. In the Express system, message

passing commands incur an overhead due to message setup (or breakdown on reads) and

command execution time. The RPS scheduler considers this time when determining the

schedule as the processor is not free to execute another node until these actions are

completed. The effect of this overhead time essentially increases the nodes execution time

by the sum of overhead for each read and write command used by the node.

In addition, the processor is utilized during the actual transmission of the

message. Since the Transputers in this system do not have a separate communications

processor, each message that is sent or received requires the use of the processor to

accomplish the message passing. This means that the sending processor will be unable to

begin computation for the next node until the message transmissions are completed.

It is assumed that once all blocks have been sent to the next processor, the

sending processor can continue computation. It appears that a processor sends one block to

the next, that block is forwarded, then the next block is sent. This means that unless only

one block is being sent, each block must transit 2 links before the sending processor can

send the next block. Because of this, the RPS scheduler was modeled assuming that once

each block had transited two links, the processor was free to continue computation.

b. Routing Overhead Model

The forwarding of messages by a processor in a system using Parasoft Express

has an effect on the execution time of the process that is executing on the processor. If a

50

message is received by a processor which is to be forwarded to another processor, the

executing process is forced to share execution with the message forwarding operation. This

results in the executing node having a longer execution time than was originally

determined.

The overall result of this characteristic of the system is that processors which are

used.to forward messages will have a longer execution time for one revolution of the

cylinder than originally planned. Since it cannot be known before hand whether this

increase in time will result in a less efficient schedule or not, the RPS scheduler examines

the effect of message forwarding on the overall schedule. Scheduling a node on a processor

which will require no message forwarding, but a slightly longer execution time might be

more efficient depending on the additional time required by message forwarding.

Therefore, this factor is taken into account by RPS.

c. Determining Routing Paths

The PS heuristic schedules the tasks by using shortest path routing. This makes

sense since a static routing scheme is most likely to use a shortest path routing algorithm

for message passing. The difficulty arises when there is more than one shortest path. For

example, in a four processor ring, the opposite processors in the ring have 2 two link paths

to each other. PS has no consideration for which path will be taken.

Express uses a shortest path static routing system to determine the path taken by

messages [HIC 95]. This routing is established when the system configuration is defined.

The paths are fixed prior to loading the processes onto the processors and does not change

throughout execution. Because of this, only one of the shortest paths is utilized and it is pre-

determined. Since this is known ahead of time, the RPS heuristic considers only the actual

routes that are used by the Transputer network during process execution.

d. Input and Output Effects

The Express system uses a host PC to load the Transputers with the code they

are to execute. The host PC is also the only processor that can receive input or produce

51

output for either standard I/O or files. Because of this, any I/O that needs to be done by a

process must be passed as a message to the host PC which will then perform the required

I/O.

This limitation adds an additional consideration to the schedule. Any node that

generates data for output or requires input will achieve this through message passing with

the host. If the processor is directly connected to the host, this will have no effect on the

schedule, except for message setup and command overhead, as the links between the host

and the Transputers are not utilized for passing messages between Transputers in the

system. However, should a Transputer not be directly connected to the host, the message

must be routed through other Transputers before arriving at the host. This will have an

effect on the schedule for the reasons discussed in the previous sections.

One additional factor with I/O does not relate to scheduling: sampling time.

Should the host PC perform the I/O for one iteration of the cylinder slower than the slowest

processor in the Transputer network, the overall execution time of the process will be

determined by the host PC. This cannot be improved by scheduling the graph differently

on the Transputer network.

2. Input to the Scheduler

The RPS scheduler requires two kinds of information to determine a schedule. First it

needs the routing paths for the system. Second it needs the task graph description. This

information is stored in two files: routing.cgd and graph.cgd.

The first line in the routing file contains the number of processors. The rest of the lines

contain information about all combinations of source and destination processors. Each

successive line lists the source processor, the destination processor, the number of links that

must be traversed between the two, and then the list of intermediate processors. When

constructing routing.cgd, no path information for same processor message passing should

be included. A path must be listed for each processor pair or an error will occur. The path

from any processor to the host PC is not listed. It is determined from the path to processor

52

zero since the host PC is connected to processor zero. The routing.cgd file for a 4 processor

hypercube is given in Figure 21.

4
011
0221
031
101
121
1320
2021
211
231
301
3120
321

Figure 21: Routing.cgd file for a 4 processor hypercube.

The format for the graph is that the first line contains the number of total nodes in the

graph followed by the number of total edges. A blank line is next followed by the node

information. Each node is listed in the form shown in Figure 22.

Node Number
Node File Name (without extensions)
Node Function Call Name
Computation Time
Number of Incoming Messages Parent 1 # of bytes Parent n # of bytes
Number of Outgoing Messages Child 1 # of bytes Child n # of bytes

Figure 22: Node description format.

Each of these node descriptions is separated by a blank line. The host node function is

numbered zero and each other node is numbered according to the programmers choice. The

nodes must be listed in numerical order in the graph file or the program will not operate

properly. The host node is used for I/O or any other functions that must be performed on

the host. The routing file must be named routing.cgd and the graph must be named

graph.cgd.

53

The RPS scheduler will output a file named schedule.cgd. This file is used by the RPS

packager to generate the Transputer code needed to run the program according to the

schedule. This file is in proper format with additional information not needed for code

generation listed at the end. This file provides the processor each node is assigned to, the

order of execution, and the index associated with each node. These are needed for code

packaging. In addition, overhead time and computation time for each node, routing delay

time, expected execution time, sequential execution time, and expected speedup are also

listed. This way, the schedule file can be read by the programmer to see what the RPS

packager has produced.

3. RPS Details

a. Scheduling Order

The RPS scheduler orders nodes according to some priority. The priority is

determined by a combination of computation time plus the overhead associated with each

message (assuming it traverses one link). This list is then used to schedule all of the nodes.

For example, suppose node N1 has a computation time of 600ts and sends one

message of 10 bytes, and node N2 has a computation time of 500pts and sends two messages

of 10 bytes. Sending 10 bytes of data carries an overhead of 317pts when traversing one

link. This means that the total time for node one is 917ps and node two is 1134gts. This

means that node N2 would be scheduled first.

b. Processor Assignment

The RPS scheduler uses a modified version of the PS heuristic to determine the

schedule. It includes overhead due to communications in determining the schedule. This is

because the Transputer system requires that the processor perform the communications

functions to send the message. These include message setup, breakdown, transmission, and

reception. Also included in the scheduling process is instruction call overhead and delays

in computation due to routing of messages through processors.

54

The RPS scheduler establishes a processor load table and a link load table as in

PS and after attempting to schedule a node on each processor, the processor with the lowest

maximum utilization is selected. The entries into the tables are made in a slightly different

manner.

The computation time is added to the assigned processor. The communication

time has to be computed by the RPS scheduler based on the number of bytes in the message.

Each message write adds time to both the computation time and the communication time.

This is due to the overhead discussed earlier. Because we assume that the processor is being

utilized up until the time that all blocks of the message have been sent, this time is added

to the processor load table for the assigned processor. Since each block must traverse two

links before the next block can be sent, the processor is occupied with sending the message

for the time it takes for each block except the last one to traverse two links and for the last

block to traverse one. This time is added to the processors utilization.

The communication time associated with this message write also must be added

to the link load table. Since a link is utilized when a block is traversing it, the time for each

block to traverse a link is added to the link load table for each link in the path that the

message takes.

During message forwarding, the daemon for the receiving link is utilized [HIC

95]. This means that the process running on the forwarding processor is timesharing the

processor with the daemon. This adds time to the processor utilization of the forwarding

processor which is characterized by Eq. 7 in Chapter III. This routing delay time is added

to the forwarding processors utilization.

Receiving messages also adds time to the receiving processors utilization. Since

the daemon is responsible for receiving all messages, it is assumed that the time to receive

a message is the same as the time to forward it. This is added to the receiving processors

utilization.

55

Communications between a Transputer and the host PC are modeled in the same

way. The only difference is that the host PC and the links connecting it to the system are

not considered when determining the lowest maximum resource utilization.

Figure 23 shows the psuedocode for this algorithm. This procedure establishes

the Processor Load Table and Link Load Table values that reflect the ready task being

assigned to a particular processor.

Two variations of the basic heuristic are considered. The first, called the simple

heuristic, uses RPS to find the processor with the lowest maximum resource utilization. If

there is more than one assignment that will produce this lowest maximum utilization, the

node is assigned to some processor non-deterministically, in our implementation, it will be

assigned to the lowest processor number. The other variation, called the complex heuristic,

does the same thing except if more than one processor gives the lowest maximum

utilization, the next highest utilization for these processors is examined. The lowest of these

utilizations is the processor assigned. If there are still more than one processor, the process

continues examining the next highest, until the tie is broken. If two processors result in

identical utilization, the first processor attempted is the one assigned.

Figures 24, 25, and 26 show an example of this. Figure 24 shows the processor

and link load tables before scheduling a particular node. Figure 25 shows the result of

scheduling it on processor 2 and Figure 26 shows the result of scheduling it on processor

3. As can been seen, the maximum utilization for either case is 500.

Using the simple heuristic, the processor that would be picked is processor 3.

This is because the first processor that found that yields the lowest maximum utilization is

picked. Since the processors are tried in numerical order, processor 3 would be tried before

processor 4 and thus be the first one found.

If the complex heuristic is used, the tie is broken by using the second highest

utilization and taking the processor with the lowest value for it. In this case, both have a

second highest utilization of 400. Continuing we find that the fifth highest utilization for

processor 3 is 100 and processor 4 is 200. Therefore, processor 4 is picked.

56

procedure Schedule (Ready Task, Processor Load Table, Link Load Table)

for each Processor in the system

add Ready Task computation time to associated
Processor Load Table entry

for all predecessors of the Ready Task that have been scheduled
if on the same processor as the Ready Task then

add buffer access time to Processor Load Table entry
else

add message send time to associated Processor Load
Table entry

add message link traversal time Link Load Table for each
link in route

add routing delay time to Processor Load Table for each
processor in route

add message reception time to destination Processor Load
Table entry

end (if)
end (for)

for all predecessors of the Ready Task that have been scheduled
if on the same processor as the Ready Task then

add buffer access time to Processor Load Table entry
else

add message send time to associated Processor Load
Table entry

add message link traversal time Link Load Table for each
link in route

add routing delay time to Processor Load Table for each
processor in route

add message reception time to destination Processor Load
Table entry

end (if)
end (for)

end (for)
end.

Figure 23: Psuedo code for scheduling function of RPS.

57

P1 P2 P3 P4 P1 P2 P3 P4

500 409 0 0 P1 100 0 ---

Processor Load Table P2 0 0

P3 0 0

P4 --- 0 0

Link Load Table

Figure 24: Example of load tables before node assignment.

P1 P2 P3 P4 P1 P2 P3 P4

500 400 300 0 P1 100 200

Processor Load Table P2 100 0

P3 0 0

P4 --- 0 0

Link Load Table

Figure 25: Load tables with node assigned to Processor 3.

58

P1 P2 P3 P4 P1 P2 P3 P4

500 400 0 300 P1 200 0

Processor Load Table P2 0 --- 200

P3 0 0

P4 0 0

Link Load Table

Figure 26: Load tables with node assigned to Processor 4.

c. Index Assignment

Nodes belonging to different instances of the task graph can be concurrently

executed. Hence, some index is required to identify the instance to which a node belongs.

Index assignment is done recursively by the RPS scheduler. Starting with the first node in

the graph, an index of zero is assigned. Then the assign index function is run for all parents

and children of the node. Because of the recursive nature of the algorithm, the parents and

children of each node are assigned an index. The algorithm used is the one presented by

Bell [BEL 92]. A minor modification is made to handle parents and children assigned to

the same processor since, in this case, no message passing time is needed. In this case, the

parent and child can be assigned the same index if the parent is executed before the child

in the cylinder iteration. If not, the parent is assigned an index of one higher than the child.

Figure 27 shows an example of index assignments for a task graph segment. Since task A

follows B in the schedule, task B must have an index of at least one greater than task A.

59

Time 0

Task B

Index i±1 5

Time 5
3

Task
A

Index i B

Time 10

Gantt chart segment Task graph segment

Figure 27: Example showing index assignments for segment of a task
graph.

When determining the starting and finishing times of the nodes, two factors are

considered. First, a node can not be considered finished until the message that is being sent

to the child has arrived. Second, routing delays due to message passing affect the starting

and finishing times of the node.

Since it cannot be determined exactly how the routing delay will affect the

starting and finishing times, the RPS scheduler assumes worst case. The starting time of

each node is figured assuming that the routing delay does not affect the starting time at all.

This way, the earliest possible starting time of the node is used. For the finishing time, just

the opposite is used. The finishing time is figured assuming the the entire routing delay

occurs prior to the completion of the node. This way, the latest possible finishing time is

figured.

A side effect of using this method is that the indices generated will take on both

positive and negative numbers. The RPS packager is written in a way that only positive

60

numbers can be used. In order to accommodate this, the indices are adjusted so that the

smallest index is set to zero and all other indices are adjusted accordingly.

B. RPS PACKAGER

The RPS packager is a program which takes a task graph, a schedule for that graph,

and code segments for each node in the graph and produces compilable source code which

will execute on a Transputer network using the Parasoft Express system. This program also

generates a batch program, compile.bat, which, when executed, will compile all source

code produce executable code.

1. Read and Write Commands

In order to write the code segments for the graph nodes, message passing commands

must be used to pass data between the nodes. Parasoft Express has commands for passing

messages, but these require the programmer to know what processor the sender or receiver

are located on. Since this is not known until after the schedule has been determined, special

functions were devised that allow the programmer to write the code segments without

knowing the location of sending or receiving nodes.

Reads and writes are written using these special annotations. They are the "+++"

annotation to receive messages from other nodes and the "---" annotation to send messages

to other nodes. These annotations must be written in the form shown in Figure 28.

+++(pointer to buffer, # of bytes);

---(pointer to buffer, # of bytes);

Figure 28: Write and read annotations.

61

The pointer to buffer parameter is a pointer to the variable that holds the data to be sent

or the location to store the data received. The number of bytes is the number of bytes that

are to be sent in the message. The sizeofO function may be used for this parameter.

These annotations are converted into appropriate "exwrite" and "exread" commands

by the RPS packager. Even though "exwrite" requires a destination processor and "exread"

requires a source processor, this is not a parameter of the new annotations. The RPS

packager uses the schedule file and graph file to determine the sources and destination

nodes and the processors they have been assigned to. It then adds this to the packaged code.

Both "exwrite" and "exread" require a type to be assigned to the message. In order for

a node to distinguish between two messages arriving from the same processor, these

messages must have different types. In order to ensure that each message is distinguishable,

each communications edge in the graph is assigned a number and this number is used as the

type for the associated message. This way, each message has a unique type. These numbers

are generated and added to the packaged code automatically by the RPS packager.

2. Code Generation Information Files

The RPS packager requires the two files that are required for scheduling, plus the

output schedule file. It also requires the node code files and host code files.

Each node consists of three files, a .tcs file, a .inc file, and a .to file. The .tcs file

contains the nodes code written in C using the two special annotations for message passing.

The .inc file is written in the following format. The first line states the number of header

files required by the node for compilation. Each subsequent line contains the header file

that will be added to the processor code in the appropriate place during code generation.

The file name should be enclosed in quotes or arrows as required by the C language. The

.to file lists on each line the data type of the message that is to be sent by the node for all

messages. If an array data type is used, it is listed using the data type and number of

62

elements in brackets (for example, int[15]). These must be listed in the order that the node

expects the messages. Examples of .to and .inc files for nodes are given in Figure 29.

1 float
"node.h" int[10]

struct nodestruct

Figure 29: Examples of .to and .inc files for nodes.

The host node requires three files. These are a .tcs file and a .inc file that are written in

a similar manner as the Transputer node files. A .fil file is also needed which declares the

files that are used for input and output. The first line of the file states the number of input

files used. Each of the next lines lists each input file name. The next line states the number

of output files with the subsequent lines listing the output file names. There is no .to file for

the host node. An example of a .fil file is given in Figure 30.

1
input.txt
1
output.txt

Figure 30: Example of .il file.

3. Generated Node Code

The RPS packager initially takes the graph and schedule files and reads them into

memory. These files are labeled graph.cgd and schedule.cgd. Once the graph and schedule

data have been read in, the RPS packager generates a compilable C code file for each

processor in the system. This is accomplished by reading the node code for each processors

nodes from .tcs files. These .tcs files are files which contain an individual node process.

The code that is generated for the Transputers takes the nodes that are assigned to each

Transputer and creates a process that executes multiple iterations of the task graph. This is

done using the revolving cylinder method. A loop is generated that executes each node

63

assigned to the processor during a loop iteration. The number of loop iterations to be made

is also included in the code packaging. The code for each processor includes a function call

to receive a broadcast message from the host that contains the desired number of iterations

of the graph.

a. Flow of Execution

When creating the code for each processor, the RPS packager first determines

which nodes are assigned to that processor by examining the schedule file. Once that has

been determined, the .inc file for each node is read and the appropriate #include statements

are placed into the code file. Global array variables are then added to the file which indicate

the processor each node is mapped to and the type of each message.

The packager then examines the nodes mapped to the processor that code is

currently being generated for. If there are messages passed between any two nodes on the

processor, global buffer variables are included in the code for these messages.

The packager then puts copies of each nodes code into the code file. This is done

by reading each line of the nodes .tcs file. After reading the line, it is examined to determine

if it is a read or write. If it is a read, an "exread" command is added to the code file by

determining the source processor and type of the message and adding this to the "exread"

using the mapping and types variables. Likewise, if it is a write, an "exwrite" command is

added to the code file by determining the destination processor and proceeding in the same

manner as a read. If it is neither, the line is simply written as is into the code file.

The main procedure of the code is generated next. This includes local variables,

and functions that control the number of iterations of the program. The main iteration loop

is generated based on the indices determined by the revolving cylinder.

The flow of execution for creating Transputer code by the RPS packager is

illustrated in Figures 31 and 32.

64

Start

Proces Eac Node

Isthe Node Ys Read .inc FileArThe

othis and Add Includes
Processor to Code File

No N

Add Mapping c
and Types 4

to the Code File

i Cxcutiong f fdd R Same pagin Se prProcesso
SNodes on the Samne BufrVralsto|

the t the Code File r3

No
Proces ach Nodes

|Code and Add
|to the Code File

Add Main Procedure
to the Code File

End

Figure 31: Execution flow for RPS code packaging. Step represented by
the thick box is described in detail in Figure 32.

65

Start

SRead Next Line

--P- of the Nodes

.tcs File

Add "exread" ti I"s+ -__,, Add "exwrite"

Function to +++ +++" •.....• Function to

Fi guree 31 ror 17etthe Code File

neither

File?

Get the Next Yes Arethr
More Nodes on

Nodes .tcs File •this Processor')

End

Figure 32: Flow of execution for processing node .tcs file. Describes step in
Figure 31 represented by the thick box.

b. Node Requirements

The nodes may not use global variables. Structures that are used by the node must be

defined in a header file which can then be included. If they are defined as a part the node

file, same process buffering will not work causing compilation errors.

66

c. Node .tcs Files

The .tcs file must include several things as part of the code. These are a static

integer variable index which is initialized to zero, an integer variable called loopcounter,

and a statement which increments index at the end of the code. These lines are needed for

same processor buffering code. If they are not included, errors will occur when the code is

compiled or executed. The format for a nodes .tcs file is shown in Figure 33. This .tcs file

is the file that goes with the .to and .inc files in Figure 29.

int
nodecodeo
{

static int index=; /* must be a variable declared exactly like this */
int loopcounter; /* must be a variable declared exactly like this */

float vall;
int val2[10];
struct nodestruct val3; /* structure defined in node.h */

/* the rest of the variable declarations */

+++(&vall, sizeof(vall));

/* the body of the node code */

---(&vall, sizeof(vall));
---(val2, sizeof(val2));
---(&val3, sizeof(val3));

index++; /* must appear as the last line before the return statement */

return 0;
}

Figure 33: .tcs file format for node code.

67

d. Same Processor Buffering

If two nodes that communicate are scheduled on the same processor, a global

variable is established for message passing and generated by the RPS packager. This

eliminates much of the overhead associated with sending the message using message

passing commands. This variable is a buffer that can be accessed by the two

communicating nodes that are on the same processor. The buffer is established as an array

that holds as many elements as needed to account for the different indices of the nodes. For

example, if one node has an index of three and the other zero, four messages will be sent

before any are read. Therefore, an array of four messages is established as a buffer.

The index variable described earlier is used by the node to keep track of the array

element of the buffer that the message is to be read from or written into. By using a static

variable, the counter is not reset when the node is completed. The loopcounter variable is

used when the messages are array data types. This variable is used to copy the array

elements into the buffer. These variables are not generated by the RPS packager and must

be included in the .tcs file as shown in Figure 33.

This method is utilized in order to avoid large amounts of overhead associated

with same processor message passing. As was shown in Chapter III, if a processor sends a

message to itself, it requires in excess of 350 microseconds for the message to be sent and

received. By using a designated buffer in memory for this, the overhead is reduced to the

time of a memory access.

e. Node Indexing Effects

The node code that is packaged is done in such a manner that the nodes are

executed according to the indices established by the revolving cylinder method. Because of

these indices, the earliest iterations of the graph only execute nodes that have high indices

and the latest iterations only execute nodes with low indices. This means that during some

iterations of the cylinder, certain nodes do not get executed. If the nodes assigned to the

processor were simply put in a loop, each node would be executed during every iteration

68

of the cylinder. In order to execute the cylinder properly, the iterations that do not require

each node to execute are not included in the loop. The RPS packager generates code to

execute these iterations of the cylinder before the loop begins and after it ends. The number

of iterations that the loop makes is adjusted to reflect this. This is shown in Figure 34.

iterations-= 1;

timing[O] = extimeo;

node2(); /* node 2 has an index of 2*!

for (i=O; i<iterations; i++)
node20;
nodeS0;

nodeS 0; /* node 5 has an index of 1 */

timing[l] = extime0;

Figure 34: Iteration loop using indices.

4. Host PC Code

The host PC is responsible for loading the Transputer processes, starting their

execution, releasing the Transputers once execution is complete, and all I/O functions of

the program. In general, the format of all host programs will be similar. The main difference

between host programs will be I/O. Because of this fact, most of the code generated is

identical. This portion of the code is simply written to the file by the code generation

program. The I/O portion of the program must be provided in a .tcs file. This file is

interpreted by the RPS packager and the I/O function is generated from it.

The host PC also is responsible for getting the number of iterations of the task graph

the user desires and broadcasting this to the nodes. An input statement followed by a

69

message broadcast statement which broadcasts the entered value to all processors in the

system is placed in the code by the RPS packager.

a. Execution Flow

When creating the code for the host PC, the RPS packager first reads the .inc file

for the host node and put appropriate #include statements in the host code file. Variables

needed to gain access to the Transputers are then added to the code file. Global array

variables are then added to the file which indicate the processor each node is mapped to and

the type of each message in the same manner as the processor code files. After this, the .fil

file is read and file pointers are added to the code so the I/O files can be accessed.

Each line of the nodes .tcs file is then read. After reading the line, it is examined

to determine if it is a read or write. If it is a read, the schedule is examined to determine the

index of the source node. A conditional statement is then added to the code file so that the

read is executed during the proper iterations of the program. An "exread" command is

added to the code file with the source processor and type of the message using the mapping

and types variables. The next line of the code is then read and also placed in the conditional

statement. This ensures that the output is produced only when the read is executed.

Likewise, if it is a write, the schedule is examined to determine the index of the

source node. A conditional statement is then added to the code file so that the read is

executed during the proper iterations of the program. The next line of the code is then read

and placed in the conditional. This ensures that input is received prior to executing the

message write. An "exwrite" command is added to the code file with the source processor

and type of the message using the mapping and types variables.

The main procedure of the code is generated next. This includes local variables,

and functions that control the number of iterations of the program, loading and running the

Transputers, and setting the number of iterations for the program. The main procedure also

include function calls to open and close any files used for I/O.

70

The flow of execution for creating host PC code by the RPS packager is shown

in Figures 35 and 36.

St t

Read .inc File
and Add Includes

to Code File

Read .fit File 1
and Add File

Pointers to Code File

Add Mapping
and Types

to the Code File

I Process Host Node.tcs File and

Add to Code File

Add Main Procedure
to the Code File

End

Figure 35: Flow of execution for host code packaging. Step represented by
the thick box is described in detail in Figure 36.

71

Start

"Read Next Line of the
.tcs File

Read Next Line
of the Host Nodes.tcs File

Add to Create the Conditional

NNo

,,+++,,,,+++,

Add "exread" Read Next Line

Function to of Dtcs File andthe Conditional Add to CondlitionalI

Read Next Lne Add "exwrite" I
of .tcs Fie n Function to

Add to Conditiona the Conditional

End

Figure 36: Flow of execution for processing host .tcs file. Describes step in
Figure 35 represented by the thick box.

72

b. Message Passing and I/0 for the Host

The host code file is generated in a similar way to the node code files. Each

message that is sent or received by the host has a "---" or "+++" annotation associated with

it. The RPS packager uses the graph and schedule files to determine the source or

destination of each message and a unique type number is assigned.

The host node requires that the read or write annotation be written before the I/

0 command, either standard I/O or file access, regardless of whether it should be before or

after. For example, if data is read from a file and then sent to a node, the logical order of

statements would be to have the file read function first and the message send annotation

second. The order of these must be reversed for the RPS packager. 1 The RPS packager will

put it in the proper location, but the read or write command is needed by the packager to

ensure that the proper data is retrieved from or sent to I/O. Also, if there is no I/O is to be

performed, but a read or write is still executed, a blank line must follow the message

passing annotation. The RPS packager expects an I/O command to follow message passing

annotations and only a blank line will be interpreted properly. An example of a host .tcs file

is given in Figure 37.

int
hosto
{

long vall, val2;

---(&vall, sizeof(vall));
fscanf (infilel, "%dnW', &vall);

+++(&val2, sizeof(val2));
fprintf (outfilel, "%Wn", val2);

return 0;

}

Figure 37: Example of host .tcs file.

1. This was discovered as an experimental fix.

73

c. Effect of Indices on I/0

When the code is generated for the host, it is done in such a way as so that the

messages are sent or received in accordance with the indices assigned to the nodes sending

or receiving the messages. Reads occur one iteration after the message is due to be received.

This helps ensure that the host is not bogged down trying to receive a message which results

in data that needs to be sent to the nodes being bogged down as well.

5. Timing and Synchronization

Timing and synchronization functions may be included in the code by selecting those

options. Timing will cause the execution time of each processor to be displayed on the

screen upon completion of the program. Synchronization will cause each processor to wait

until all processors have completed the cylinder before continuing.

If a task graph is scheduled in such a way that it is not synchronized, the message

passing buffers may overflow causing deadlock. This is alleviated by the using

synchronization command. This also will result in extra overhead so it should only be used

when necessary.

C. RPS PROFILER

The RPS profiler will generate code which, when compiled and executed, will

determine the computation time of the tested node program. This information is necessary

as it must be included in the graph file, and may be unknown to the programmer.

The RPS profiler generates code in a manner similar to the RPS packager and provides

a batch file, compile.bat, for compiling the code. The RPS profiler generates a host program

which loads and executes the generated node, and receives the execution time from the

node. The node that is generated differs from the code generated by the RPS packager in

the fact that all message passing annotations are removed. This way, the code only contains

functions that are involved in computation.

When using the RPS profiler, the program will prompt the user for the name of the file

to be tested. This file name is entered using no extensions. Since the node has three files, a

74

.tcs, a .to, and a .inc file, the profiler automatically adds the proper extension when needed.

The user will also be prompted for the function name of the node. The complete name

should be entered exactly as the function would be called. For example, if the function is

called node it should be entered as nodeo.

D. INPUT ERRORS

The RPS environment is still under development and currently is not tolerant of any

errors in file format or programming. If there are any of these types of errors, the program

will still run and produce output. However, the results are unpredictable and usually

incorrect. If the output results in an unrealistic schedule, most likely one of the .cgd files is

in the wrong format. If the schedule appears to be correct, but the code will not compile, an

error in programming has most likely occurred.

75

76

V. TESTING AND RESULTS

A. METHODOLOGY

Experiments were conducted to determine the effectiveness of RPS at maximizing the

throughput of repetitive task graphs. The results of these experiments were compared with

the predicted results and with the MH heuristic developed by El-Rewini and Lewis [ELR

90]. Since MH is designed to minimize response time and RPS minimizes the average

execution time per instance, the comparison is performed by repeating application of the

schedule determined by MH to successive instances of the task graph, even though MH

does not consider pipelining of successive instances of the graph. A comparison between

the two different RPS variations is also made.

1. Benchmarks

The experiments were conducted on both real and randomly generated task graphs.

The graphs were used to write programs that simulated the execution of the task graphs.

The programs were then profiled, scheduled and packaged using the RPS profiler,

scheduler and packager.' The code was compiled and run and execution time was recorded.

Two actual algorithms were used in the experiments. One, the correlator graph, is a

signal processing application, and the other, Gaussian elimination, is a popular linear

algebra algorithm. By using these algorithms, the effectiveness of RPS on actual

applications can be shown.

The six random graphs were generated as layered task graphs such that each node of a

layer is connected to at least one node in the preceding and succeeding layer. Of these

graphs, three contain 20 nodes and approximately 30 edges, and the other three contain 40

nodes and approximately 55 edges. Each graph consists of a different number of levels.

This ensures that the the spectrum of graphs, from highly parallel to highly sequential, that

most likely resemble actual task graphs are tested.

1. Since the programs were written to simulate the task graphs, the nodes had to be profiled to
ensure that they accurately modeled the nodes of the graph.

77

Each of the graphs were modified to vary the computation-communication ratio by

varying the size of the messages. The graphs were changed so that the ratio was changed,

but the graph maintained the same topology. The computation-communication ratios used

were 10 to 1, 5 to 1, and 1 to 1. The amount of communications was estimated by using

only the time taken to transfer a byte, not the overhead associated with it.

The 20 node graphs were also modified such that the computation-communication

ratio remained constant, but the magnitude of both computations and communications were

increased. By doing this, the effect of multiple block messages was examined.

2. Multiprocessor Topology

Two different system topologies were used in the experiments, the ring and the

hypercube. The ring topology is an interconnection network that is most restrictive of

communications. The hypercube represents a moderately connected network. Each of these

configurations were tested using two, four, and eight processors.

3. Scheduling Methods

The RPS scheduler provides the two different scheduling variations described in

Chapter IV. For each of the benchmarks tested, both scheduling methods were utilized.

B. EXPERIMENTS

The measure that is used for comparisons in the experiments is efficiency. Efficiency

is defined to be the speedup found divided by the number of processors. This way, a

comparison between speedups found using a different number of processors can be made.

1. Accuracy of the System Model

The test programs were run on the Transputer system and the execution times were

recorded. In order to determine how accurate the system model that was used is, the actual

execution times of the graphs were compared to the execution time that was predicted by

the RPS scheduler.

78

The difference between predicted and actual execution times varied mostly according

to the computation-communication ratio of the graph. A comparison between the three

different ratios showed that a 10 to 1 ratio produced actual execution times that varied from

predicted in the range of 5 percent of the predicted time. For a 5 to 1 ratio, the variation

increased to 10 percent. For a 1 to 1 ratio, the variation increased further to 25 percent.

The communications model that was achieved through testing generated equations that

were used to determine message passing times and routing delays. Calculations made using

these equations yield results which tend to be accurate to within 10 to 20 microseconds.

These differences would account for actual execution times which were not exactly the

same as predicted, but would not account for the large variations found.

Since the largest variations are encountered when the communications of a task graph

are increased, the most likely cause of the variation is that our communications model is

incomplete. Since an actual system model was unavailable, tests were performed to identify

the model. While these tests gave a good indication of the underlying model of the system,

it is likely that one or several factors which affect communications are not examined by our

testing method.

2. Efficiency of the Scheduling Heuristic

The efficiency of the RPS heuristic can be judged by examining how effective it is at

increasing the throughput of the task graph. In these experiments, we look at the efficiency

of the simple heuristic. The measure we will use for this is efficiency. The efficiency is the

speedup attained divided by the number of processors that are used.

The effectiveness of the algorithm is relative. While the algorithm may produce

increased throughput, its effectiveness can only be judged by comparing it to another

algorithm. This is done in a later section. In this section, we compare different graph

characteristics to show what type of graphs RPS most effectively schedules. For this set of

experiments, the simple heuristic is used.

79

Since computation-communication ratio is often discussed in this chapter, the quantity

R will be used in the figures to denote computation-communication ratio. All values

described by R are a ratio of time values. For example, R=1Oto 1 describes a computation-

communication ratio where the graph averages 10 time units of computation for every 1

time unit of communication.

a. Random Task Graphs

For our set of random task graphs, we divide them into two groups. Group 1

contains the graphs with 20 nodes and group 2 the graphs with 40 nodes. The average

computation time per node for each task graph is set to 2,000 microseconds. The efficiency

of each graph was measured on different system topologies utilizing two, four, and eight

processors.

Figure 38 shows the efficiencies of the two groups on a hypercube topology

when each graph utilized a 10 to 1 computation-communication ratio. The average

communications is set at 200 microseconds to achieve this ratio. As we can see from the

graph, the graph containing more nodes have a higher efficiency than graphs with fewer

nodes. This is as expected since it is more likely that the nodes will be able to be evenly

distributed amongst the processors when more nodes are present.

80

Efficiency
1

0,8 ---

-Group 1, R=1 Otol

06Group 2, R=1 Otol

-%-Group 1, R=5tol

0.4 ------ " --------------------- -*-Group 2, R=5tol

-Group 1, R=ltol

2Group 2, R=ltol
0 .2 -- ------ -----------

2 4 68

Number of Processors

Random graphs, Simple heuristic, Hypercube topology

Figure 38: Efficiency for random task graphs using hypercube topology
and simple heuristic.

Figures 38 also shows the same relationship between the two groups of graphs

where the computation-communication ratio was altered to 5 to 1 and 1 to 1 by increasing

the average communication to 400 and 2,000 microseconds, respectively. The same trend

that was seen with the 10 to 1 ratio is again shown, more graph nodes leads to higher

efficiency.

Looking at the speedup found for the graphs in group 1 for the different

computation-communication ratios we see that increasing the communication decreases

the amount of speedup that the algorithm is able to produce. Since the communications

requires processor time, this processor time is no longer available to computation, thus

81

reducing the maximum throughput that can be achieved. By the time the ratio reaches 1 to

1, the algorithm provides little if any speedup. This is depicted in Figure 39.

Speedup
5

---------------------------- . R =1 Oto1

R =5tol

----- ------------------------------------- R=tol

0
2 4 6 8

Number of Processors

Random graphs from Group 1, Simple heuristic, Hypercube topology

Figure 39: Speedup for random task graphs from group 1 using
hypercube topology and simple heuristic.

Since the message passing time is non-linear, a test was conducted to determine

if increasing the scale of the task graph (increasing both computation and communication

while keeping the computation-communication ratio the same) had any effect on the

efficiency. Using the group 1 graphs and a 10 to 1 computation-communication ratio, the

average computation time was increased to 20,000 microseconds and the average

communication time was increased to 2,000 microseconds, thus keeping the 10 to 1 ratio.

These graphs are referred to as large scale while the original graphs are referred to as small

scale. Figure 40 shows the resulting efficiencies when run on a hypercube topology.

82

Efficiency

0,8

0.6•

-Large Scale

4- Small Scale
0.4...................................

0.2...................................

0
2 4 6 8

Number of Processors

Random graphs from Group 1, R=I Otol, Simple heuristic, Hypercube topology

Figure 40: Efficiency of large scale vs. small scale random graphs from
group 1.

As can be seen, graphs which utilize larger computation and communication

times achieve greater efficiency when scheduled using RPS. This can be attributed to

message pipelining that is seen when messages consist of more than one block. Also, the

message overhead is not as much of a factor since it becomes small in comparison to the

computation time.

Finally, a comparison between the hypercube and ring topologies is made for

both groups of graphs. The efficiencies are depicted in Figure 41.

As with the hypercube, the ring configuration also has the characteristic that a

graph with more nodes executes with a higher efficiency. By comparing the ring and

hypercube, very little difference is seen, and in some cases, the ring performs slightly better

than the hypercube. Since the ring has a more restricted communications network, this is

not expected. The most likely cause of this lies with our algorithm. Because we use a greedy

algorithm, once a task is scheduled, its mapping cannot change. This affects the mapping

83

of tasks that are scheduled later and may cause them to be placed on processors that are less

optimal on a hypercube.

Efficiency
0.7

EGroup 1 Hypercube

0,6 M Gmup1 Ring
DGroup 2 Hypermube

0.5 E-Group 2 Ring - -

0.4 i

0,3

0.2

0.1

0
R =lto R -5tol R=1 Otol

Computation -Commu nication Ratio

Simple heuristic, Each configuration consists of 8 processors

Figure 41: Comparison of 8 processor ring and hypercube topology for
random task graphs.

b. Correlator Graph

The correlator graph was tested to provide evidence that the RPS heuristic is

effective at scheduling real signal processing applications. The tests performed on the

random task graphs were used for testing the correlator. Neither the computation-

communication ratio nor the scale of the scale of the task graph were altered since the

correlator application is a real application and its ratio is fixed. The ratio of the correlator

is 6.21 to 1. The correlator task graph is depicted in Figure 42. The computation numbers

for each node are in microseconds and the communication numbers are in bytes.

84

1 FIXFL1=5000 2 HIXFL2=5000

16384 16384

3 BANDI=15000 4 BAND2=15000

16384 16384

5 FIR1=10000 6 HIR2=10000

141096 4096

7 FFT1= 100000 8 ZEROFILL=5000

4096 4096

9 WINDOW1=40000 10 FFT2=100000

4096

11 WINDOW2=40000

4096

12 MULTY=7500 13 POvR= 14 POWVERY=100000

INVERSEFFT= 15 16 MULfPWR,SQRT=5000

17 INTEGRATE=80000

18EXPAVE=5000 51

19 ASCANOUT=5000 20 GRAMOUT=5000

Figure 42: Correlator task graph. From [SHU 92].

85

The resulting efficiency of the correlator is shown in Figure 43 along with the

efficiency of the random graphs with 10 to 1 computation-communication ratios. The

correlator performance follows the trend shown with the random graphs and produces even

better results than the random graphs. This is most likely due to the structure of the

correlator graph. With minimal dependencies between nodes, the scheduler is has more

flexibility with processor assignment.

Efficiency

0.6 ---------------- Correlator

- Group 1, R=5tol

0.4 ..- -Group 2, R=5tol

0.2 ...

0
2 4 6 8

Number of Processors

Simple heuristic, Hypercube topology

Figure 43: Efficiency of correlator vs. random task graphs with R=5tol.

The hypercube and ring topologies are then compared for the correlator. This is

shown in Figure 44. The correlator shows a more dramatic decrease in efficiency when

using a ring topology than was seen with the random task graphs. This is most likely caused

by the correlator being mapped in such a way that longer routes were used for message

passing.

86

Efficiency
0.7

U Ring

0.6 E] Hypercube ----------------

0.5

0.3 - -- -

0
Correao

Simple heuristic, Each configuration consists of 8 processors

Figure 44: Comparison of 8 processor ring and hypercube topology for
correlator graph.

C. Gaussian Elimination

The Gaussian elimination graph, a linear algebra application, was tested to

provide further evidence that RPS is effective at mapping real applications. The Gaussian

elimination task graph is shown in Figure 45.

When testing Gaussian elimination using the actual computation and

comm-unication values given, the resulting mapping had all nodes assigned to the same

processor. This, of course results in no speedup. Because the message passing overhead is

much larger than the computation time of the node, placing all nodes on the same processor

and avoiding the overhead provided the best schedule.

To examine whether communication overhead is the only reason that no speedup

is achieved with Gaussian elimination, the scale of the program was increased. Each node

size and message size were increased by 10 times and then by 50 times. While this resulted

in a mapping that place some nodes on different processors, the resulting speedup was

87

minimal. Examining the computation-communication ratio, we can see the problem. The

ratio is 1 to 1.54 which is even worse than 1 to 1. As was shown with the random graphs,

little to no speedup is achieved with a 1 to 1 ratio.

All edges on
this level
comms=60

All edges on

All edges on

~this level
Scomms=3 0

All edges on
~this level
comms=200
All edges on

Figure 45: Gaussian elimination task graph. From [DIX2 93].

Since the amount of communications is causing no speedup to be gained by RPS,

another possible solution arose. If the speed of the communication links could be increased,

speedup comparable to the other graphs might be achieved. To simulate this, the two larger

88

scale graphs were alter such that each was tested with a 10 to 1 and a 5 to 1 computation-

communication ratio. This simulated faster links. The resulting efficiencies are shown in

Figure 46.

Efficiency

0.6 .8=50 Times, R=lOtol

-48=50 Times, R=5tol

"-S=10 Times. R=lOtol
0.4 "-- -- 8=10 Times, R=5tol

0 .2 -- - -- -- - -- -- -- -- -- -- - -- -- - -- - - - --- -- - -- -- -- -- - -- -

2 4 68

Number of Processors

Simple heuristic, Hypercube topology, S represents graphs scale

Figure 46: Efficiency for Gaussian elimination task graphs.

The resulting efficiencies again closely follow the random task graphs. Increases

in the scale of the graph and increases the computation-communication ratio result in

increased efficiencies.

The ring topology is compared with the hypercube for these graphs. This is

shown in Figure 47. For Gaussian elimination, only small differences are found between

the ring and hypercube. As was seen with the random graphs, in some cases RPS provides

better mapping for the ring than the hypercube.

89

Efficiency
0.6

N Ring

0 .5 L] H y p e r c u b e

0.4 -

0.23 .---

0.1

(0
1 OX, R=Stol 1 OX, R=1 Otol 50X, R=5tol 50X, R=1 Otol

Scale and Comp-Comm Ratio

Simple heuristic, Each configuration consists of 8 processors

Figure 47: Comparison of 8 processor ring and hypercube topology for
Gaussian elimination graph.

3. Comparison of the Two Scheduling Variations

The two scheduling variations tested with RPS are of different complexity for mapping

the tasks to processors. The simple heuristic uses a simple method of placing a task on the

first processor with the lowest maximum resource utilization, while the complex heuristic

breaks ties by using the other resource utilization figures. The complex heuristic requires

that the resource utilization figures be sorted so that if a tie exists, the second highest

utilization, and lower utilization if necessary, of these processors can be compared.

Each iteration of method one consists of assigning the task to a processor, update the

appropriate utilization tables, and repeat for each processor in the system. This is repeated

for each task. If we have P processors, updating the utilization tables is proportional to P.

This means that if we have T tasks, the complexity of the simple heuristic is O(TP2).

For the complex heuristic, after the utilization tables are updated, the figures must be

sorted. Since the size of the tables is proportional to P and the most efficient sort is

90

O(PlogP), sorting the utilization figures is of order O(PlogP). This means that the complex

heuristic is of order O(Tp 21ogP).

Comparing the results of the two methods shows that the complex heuristic cannot

guarantee a better schedule than method one. For example, one of the 20 node graphs had

a speedup of 3.95 using the simple heuristic and 3.86 using the complex heuristic for an 8

processor hypercube. This same graph had a speedup of 3.74 using the simple heuristic and

3.88 using the complex heuristic for an 8 processor ring.

Because of the additional complexity of the complex heuristic, the simple heuristic is

the better method to use. For a large number of processors, the running time of the complex

heuristic would greatly exceed the simple heuristic with no guarantee of improved

performance.

The only case where the complex heuristic consistently gave better results than the

simple heuristic is for a 1 to 1 computation-communication ratio. Since we have seen that

this ratio does not give significant speedup anyway, graphs with this ratio would most

likely not be used with RPS.

4. Comparison with MH heuristic

Comparing RPS to MH was done by utilizing the MH simulator that was constructed

by Kasinger on our task graphs. This simulator was constructed using a simplistic model

for the underlying system hardware and software and does not take into account all factors

of message passing that are present in our system. In order to compensate for this, the task

graphs were adjusted to reflect these message passing factors. While this simulation gives

a good comparison between the two methods, actual testing on the system would provide

more accurate results.

a. Random Task Graphs

The two groups of random task graph were run on the MH simulator using the

hypercube topology. The resulting efficiencies are shown in Figure 48 for graphs with a 10

to 1 computation-communication ratio. Also depicted are the efficiencies found using RPS.

91

Efficiency
1

0. ...---. . . .RPS, R=10tol

-+-RPS, R=5tol

--- MH, R= 0Otol0.4................ -"-MH, R=5tol

0.2..................................----------
0.,

C
2 4 6 6

Number of Processors

Random graphs from Group 2, Simple heuristic, Hypercube topology

Figure 48: RPS vs. MH using the hypercube topology for random task
graphs.

RPS provides a better mapping than MH for any number of processors. This

improvement tends to increase as the number of processors increases. Of all graphs tested,

in only two cases did MH provide a mapping that resulted in a better mapping than RPS.

These cases were for 2 processors and the resulting efficiencies were nearly identical.

Tests were also run using a 5 to 1 computation-communication ratio, shown in

Figure 48. These results were similar to the 10 to 1 ratio. A 1 to 1 ratio was not test since

little speedup was achieved with RPS anyway.

Another interesting note is that the graphs that had a structure that was had more

parallelization performed better on MH than ones that are more sequential. This is due to

the fact that MH does not consider pipelining when determining the mapping. Even with

this improved performance, these graphs still did not perform better than RPS.

92

The ring configuration was also tested with similar results. Figure 49 shows the

10 to 1 ratio comparison of RPS and MU. The 5 to 1 ratio, also shown in Figure 49, also

resulted in RPS providing more efficiency than MH.

Efficiency

0.6 RPS, R= 10tol

-I-RPS, R=5tol

0.4~~~~~~~~~~~~ ----------------------... *MH, R =1 0to1
'MH, R=5tol

0.4 ---

01
2 4 6 0

Number of Processors

Random graphs from Group 2, Simple heuristic, Ring topology

Figure 49: RPS vs. MH using the ring topology for random task graphs.

b. Correlator Graph

Similar comparisons were made for the correlator graph. In all cases for the

correlator graph, RPS provided a greater efficiency than MH. This held for both the

hypercube and the ring topologies. The comparison of RPS and MH for the correlator on

the hypercube is shown in Figure 50.

93

Efficiency

0.8

0.6 -.. .RPS

01
2 4 6 8

Number of Processors

Simple heuristic, Hypercube topology

Figure 50: RPS vs. MH for correlator graph on hypercube topology.

c. Gaussian Elimination

The comparison between RPS and MH for Gaussian elimination were made

using the two larger scale graphs with 10 to 1 and 5 to 1 computation-communication

ratios. The results for the hypercube topology are depicted in Figure 51. These results are

similar to the results found for both the random graphs and the correlator. The ring

configuration also provided similar results. A 1 to 1 ratio was not tested since this ratio,

again, showed no significant speedup using RPS.

94

Efficiency

0.6 -------- RPS, R =1Otol
-+-RPS, R=5tol

0.4 -- --- -- --- -- --- -- --- - --- -- -- -- --- -- M H , R =l1O tol
~MH, R=5tol

Number of Processors

Scale = 50 Times, Simple heuristic, Hypercube topology

Figure 51: RPS vs. MH for Gaussian elimination on hypercube topology.

95

96

VI. CONCLUSIONS

A. CONCLUSIONS

This thesis presented the Realistic Periodic Scheduling (RPS) heuristic and the

programing tools and environment that implement the heuristic. The RPS heuristic is

designed to maximize the throughput of repetitive task graphs on a distributed memory

multiprocessor, as opposed to minimizing the execution time of one iteration. The heuristic

takes into consideration system topology, communications between tasks, and resource

contention in determining a schedule as in Kasingers [KAS 94] PS heuristic. Also

considered are the characteristics of the underlying system hardware and software that

affect communications and execution time. By targeting repetitive task graphs with the

RPS heuristic, pipelining of successive iterations of the graph is possible. RPS takes

advantage of this.

The RPS heuristic is described in detail in this thesis. Also described are the

programming tools which implement the heuristic. These are the RPS scheduler, RPS

packager, and RPS profiler. These tools were used to create, profile, schedule, and package

repetitive task graphs. Tests of these graphs show that RPS is an effective method of

scheduling repetitive task graphs. Average efficiencies of 67 percent on four processors and

59 percent on eight processors using a computation-communication ratio of 10 to 1 were

observed, while lowering the computation-communication ratio resulted in lower

efficiencies. The communications model used proved to be adequate as the actual execution

times of the graphs were close to the predicted times. These times were within 5 percent for

10 to 1 computation-communication ratios and 25 percent for 1 to 1 ratios. Comparisons

between the simple and complex heuristic show that no appreciable throughput

improvement is gained by the more complex algorithm. The average difference was less

than 5 percent. Comparisons with the MH heuristic of El-Rewini and Lewis [ELR 90] show

that superior throughput can be achieved by RPS. Efficiencies observed using RPS were an

average of .14 higher than MH on four processors and .21 higher using eight processors. A

97

case where RPS is particularly effective is larger scale graphs. RPS is particularly

advantageous over MH for larger numbers of processors and graphs that are highly

sequential because of its overlapping of different graph instances. Using a highly sequential

random graph and eight processors, the efficiency observed using RPS was .31 higher than

MH.

B. FUTURE WORK

Additional research on RPS is needed for task graphs containing cycles. The model

that was used by RPS constrained the graphs such that the graphs must be acyclic. Enabling

task graphs with cycles to be scheduled by RPS opens a wider base for the use of RPS.

Research should also be conducted in the area of incorporating granularity

management techniques [NEG 94] into the heuristic. As was seen in the tests, changing the

node sizes has an effect on the resulting schedule and throughput achieved. By

incorporating granularity management into the heuristic, higher throughputs would be

possible.

A Graphical User Interface (GUI) should be incorporated with the system. This would

aid the programmer in developing task graphs for use with RPS.

Finally, the RPS heuristic should be implemented on other systems with different

hardware and software characteristics. This would help show the validity of RPS,

regardless of the system used.

98

APPENDIX

This appendix contains the C code for all scheduling, code generation, and computation

time testing functions found in this thesis.

A. RPS SCHEDULER AND RPS PACKAGER MAIN PROGRAM

/* This is the main program for RPS Scheduler and RPS

Packager */

#include "codegen.h"
#include "schedule.h"

int
main()
{

generateSchedule();

codeGen(;

return 0;

}

B. SCHEDULE FUNCTIONS HEADER FILE

/* This file is schedule.h. It is the header file for the RPS scheduling
functions */

#ifndef _SCHEDULE_H
#define _SCHEDULEH

#define MAXPROCS 16
#define MEMACCESS 3
#define BYTEMEMACCESS .1274
#define INSTOVHD 150
#define SETUP 155
#define ROUTING 70
#define BLOCKSIZE 1024
#define BYTE1 1.23

#define BYTE2 1.1

#define BYTE3 0.98

#define RTNGDLY 54

#define BYTERTDLY .098

struct schedData (/* structure used to hold schedule data that is */

int processor; /* generated by the scheduling program */
int index;

99

int order;
long startTime;
long finishTime;
int overheadTime;
int commTime;
int compTime;

3;

/* Schedule generation function. It uses all other functions in this

file to generate the schedule

void generateSchedule ();

/* Reads the graph file and stores computation times in times,
communications times in edgemat, and the number of nodes in the
graph in nodes.

void readGraph (int *edgemat, struct schedData *sched, int nodes);

/* Reads the routing configuration file and stores the number of
processors in procs and the routing between any two processors in
the routes matrix. */

void readRouting (int *routes[MAXPROCS+l][MAXPROCS+l], int procs);

/* Outputs the schedule data to the output file in a form that is
readable by the code generation functions

void outputSchedule (struct schedData *sched, int nodes, int procs,
int *rDelay);

/* Schedules the nodes to processors using the Periodic Scheduling

Heuristic*/

void PSHeuristic (int *routes[MAXPROCS+1[1[MAXPROCS+I], int *edgemat,
struct schedData *sched, int procs, int nodes,
int *routeDelay);

/* Determines the order that nodes are to be scheduled according to
largest available node first */

void determineOrder (int *ord, int *edgemat, struct schedData *sched,

int nodes);

/* Copies one set of utilization tables to the other */

void copyTables (long linksrc[MAXPROCS+I] [MAXPROCS+I],
long procsrc[MAXPROCS+l],
long linkrec[MAXPROCS+l] [MAXPROCS+l],

100

long procrec[MAXPROCS+l]);

/* Determines the maximum resource utilization of links or
processors */

long findMax (long linkUtil[MAXPROCS+I] [MAXPROCS+I],
long procUtil[MAXPROCS+I]);

/* Updates resource utilization tables given assignment of a node to a
particular processor. */

void updateTables (long LUtil[MAXPROCS+] [MAXPROCS+l],

long PUtil[MAXPROCS+I], int *edgemat,
int *routes[MAXPROCS+I] [MAXPROCS+I],
int procAssigned,int readyTask, int nodes,
struct schedData *sched);

/* Assignes appropriate overhead time for message passing to the node */

void setOverhead (int *edgemat, int *routes[MAXPROCS+I] [MAXPROCS+I],
int procAssigned, int readyTask, int nodes,
struct schedData *sched, int *rDelay);

/* Recursively determines the indices for each node in the graph
according to precedences and communication contention */

void assignIndex (struct schedData *sched, int *edgemat, int nodes,
long Ctime, int current, int index);

/* Sorts the resource utilization amounts in decreasing order

void sortUtil(long tempLinkUtil[MAXPROCS+l] [MAXPROCS+I],
long tempProcUtil[MAXPROCS+l],
long utilList[MAXPROCS+(MAXPROCS*MAXPROCS)]);

#endif

C. SCHEDULE FUNCTIONS SOURCE FILE

/* This file is schedule.c. It is the source file for all RPS scheduling
functions */

#include "schedule.h"

#include <stdio.h>
#include <limits.h>

FILE *graphFile;
FILE *schedFile;
FILE *routing;

101

void generateSchedule (

jot *edgematrjx;

jot i, j, numnodes, numedges, numprocs;

int *routes[MAXPROCS+l] [MAXPROCS+l);

jot *routeDelay;

struct schedData *schedule;

graphFile = fopen("graph.cgd", ..r1);
fscanf (graphFile, "%d%d\n", &numnodes, &numedges);

routing = fopen("routing.cgd", "r");

fscanf (routing, "%d\n", &:nuinprocs);

for (i=O; i<MAXPROCS+l; i+±) (/* initialize routing

matrix pointers *
for (j=O; j<MAXPROCS+l; j++) { /* to NULL *

routes~i][j] = NULL;

edgematrix = (int*) calloc (numnodes*numnodes, sizeof(int));

for (i=O; i<nurnnodes*numnodes; i++) (* initialize edge matrix ~
(edgematrix+i) = 0; / times to zero *

schedule = (struct schedData*) calloc ((numnodes),
sizeof (struct schedData));

readGraph (edgematrix, schedule, numnodes);
readRouting (routes, numprocs);

routeDelay = (int*) calloc ((numprocs), sizeof(int));

for (i=0; i<numprocs; i++)
*(routeDelay+i) = 0;

PSI-euristic (routes, edgematrix, schedule, numprocs, numnodes,

routeDelay);

outputSchedule (schedule, numnodes, numprocs, routeDelay);

/* free all dynamically allocated memory ~

free((void*) routeDelay);
free(C(void*) edgematrix);

free((void*) schedule);
for (i=0; i<MAXPROCS+l; i++){

for (j=0; j<MAXPROCS+l; j++){

102

if (routes[i] [j] != NULL)

free((void*) routes[i][j]);

void
read~raph (int *edgemat, struct schedData *sched, mnt nodes)

mnt i, j, number, from, to, pred, succ;
char junk[80];

for (i=O; i<nodes; i++){

fscanf (graphFile, "%d\n", &number); /* get node number *

fscanf (graphFile, "%s\n', junk);

fscanf (graphpile, "%s\n", junk);

/* store nodes computation time in comp time array ~
fscanf (graphFile, "%d\n', &(sched+number)->compTime);

(sched+number)->processor = -1;
(sched+number)->overheadTime = 0;

(sched+number)->commTime = 0;
(sched+number)->index = INTMAX;

fscanf (graphpile, "%d", &from); 1* get number of
predecessors *

for (j=O; j<from; j++) (/* get predecessor

and edge
fscanf (graphFile, "%d", &pred); /* communication time ~
fscanf (graphFile, "%d", edgemat+pred+ (number*nodes));

fscanf (graphFile, "\n");

fscanf (graphFile, "%d", &:to); /* get number of succesors ~

for (j=0; j<to; j++) (/* get succesor and edge *

fscanf (graphFile, "%d", &succ); /* communication time ~
fscanf (graphFile, "%d", edgemat+numnber+ (succ*nodes));

fscanf (graphFile, "\n\n');

fclose (graphFile);

void

readRouting (mnt *routes[MAXPROCS+11[MAXPROCS+1], mnt procs)

103

mnt i, j, to, from, links;

for (i=O; i<procs*(procs-1l); i++)

fscanf (routing, "%d%d%d\n", &from, &to, &links); /* get to and

from and

number of

links

routes[from][to] =(int*) calloc (links, sizeof(int));
routes[from] [to] =links; / store # of

links

for (j=l; j<links; j++) {/* get all processors in route ~
fscanf (routing, "%d", routes[from] [tol+j);

fscanf (routing, "\n");

fclose(routing);

for (i=zO; i<procs; i++) { /* ensure that a route exists between *

for (j=O; j<procs; j÷+) (/* all processors *
if (i != j)(

if (routes[i][j] = NULL)

printf ("Routing file is incomplete.");

exit (0);

/* figure routes from processors to host *

for (i=0; i<procs; i++)(

routes[procs] [i] =(int*)calloc((*routes[O] Ei])+l, sizeof(int));
*routes[procs] [ii (*routes[0][i])+l;

if (*routes[procs] [i] > 1) (

*(routes[procs][i]+l) = 0;

for (j=2; j<*routes[procs][i]; j++)
*(routes[procs][il+j) = *(routes[0][i]+j-l);

/* figure routes from host to processors ~
for (i=0; i<procs; i+÷) (

routes[i][procs] =(int*)calloc((*routes[i][O])+l, sizeof(int));

*routes[i][procs] =(*routes[i][O])+l;

for (j=l; j<(*routes[i][procs])-~l; j++)
*(routes[i][procs]+j) = *(routes[il[01+j);

if (*routes[i] [procs] > 1)

*(routes[i][procs]+(*routes[i][procs])1l) = 0;

104

}
]

}

void
outputSchedule (struct schedData *sched, int nodes, int procs,

int *rDelay)
{

* output all schedule data in form that can be read by the code
generator and output any additional data that the is useful to
the user */

int i, j;
long temp, total=0, largest=0;

schedFile = fopen("schedule.cgd", "w");

fprintf (schedFile, "Number of processors:%d\n\n", procs);

for (i=l; i<nodes; i++) {
fprintf (schedFile, "Node %d : processor %d, order %d\n", i,

(sched+i)->processor, (sched+i)->order);
}
fprintf (schedFile, "\n");
for (i=l; i<nodes; i++) {

fprintf (schedFile, "Node %d index: %dkn", i, (sched+i)->index);
]
fprintf (schedFile, "\n");

for (i=l; i<nodes; i++) {
fprintf (schedFile, "Node %d computation time : %d", i,

(sched+i)->compTime);
fprintf (schedFile, " overhead time : %dkn",

(sched+i)->overheadTime);
}
fprintf (schedFile, "\n");

for (i=0; i<procs; i++) {
temp = 0;
for (j=l; j<nodes; j++) (

if ((sched+j)->processor := i) (
temp +: ((long) (sched+j)->compTime +

(long) (sched+j)->overheadTime);
}

}
if (largest < ((long)*(rDelay+i)+temp)) {

largest = (long)*(rDelay+i)+temp;
}
fprintf (schedFile, "Processor %d routing delay : %d", i,

*(rDelay+i));

]O5

fprintf (schedFile, " Total time :%ld\n",

(long)*(rDelay+i)+temp);

for (izi; i<nodes; i++)

total += (long) (sched+i)->compTirne;

fprintf (sched~ile, "\nExpected execution time: %ld\n", largest);
fprintf (schedFile, "Total sequential execution time: %ld\n", total);
fprintf (schedFile, "Expected speedup: %3f\n',

((float)total/(float)largest));

fclose(schedFile);

void

PSHeuristic (mnt *routes[I4A(PROCS+l] [MAXPROCS+l), mnt *edgemat,

struct schedData *sched, mnt procs, mnt nodes,
mnt *routeDelay)

long linkUtil[MAXPROCS+l] LMAXPROCS+l];
long procUtil[MAXPROCS+l];

long tempLinkUtil[MAXPROCS+l] [MAXPROCS+l];
long tempProcUtil[MAXPROCS+l];
long tempUtilList [MAXPROCS+ (MAXPROCS*MAXPROCS)];

long bestUtilList [MAXPROCS+ (MAXPROCS*MAXPROCS));
int *order; /* array that hold the order that nodes are to be

scheduled in *
mnt i, j, k, readyTask, currentProc, selection, count,

bestfound, ord;
long cylTime, maxUtil, temp, finishTime, tempCylTime;
mnt minlndex=O;

for (i=O; i<=MAXPROCS; i++i) (/* initialize processor and link *
procUtil~i] = 0; /* utilization tables to zero ~
for (j=0; j<=MAXPROCS; j++)

linkUtil[i] [j] = 0;

order =(int*) calloc ((nodes-l), sizeof(int));

determineOrder (order, edgemat, sched, nodes); /* determine order to

schedule nodes in ~
sched->processor = procs;

printf("Do you wish first best (0), or best overall(l) scheduling?");
scanf("%d", &selection);

printf ("\n")

106

for (i=O; i<nodes-l; i++)

maxUtil = LONGMAX;

for (j=O; j<MAXPROCS; j++)
bestUtilListtj] = LONGMAX;

for (k=O; k<MAXPROCS; k++)

bestUtilList[MA.XPROCS+j+(k*MAXPROCS)] = LONGMAX;

readyTask = *(order+j); /* get ready task from order list *

for (j=O; j<procs; j++)

/* set temporary utilization tables to current schedule *

copyTables (linkUtil, procUtil, tempLinkUtil, tempProcUtil);

/* update tables to reflect readyTask being schedule on

processor j *
updateTables(tempLinkUtil, tempProcUtil, edgemat, routes, j,

readyTask, nodes, sched);

if (!selection)

temp = findMax(tempLinkUtil, tempProcUtil); /* get maximum

resource

utilization *

if (temp < maxUtil) (/* if this is the minimum so far, *

maxUtil = temp; /* record max utilization and the *

currentProc = j; /* processor ~

else{

1* order Util figures *

sortUtil(tempLinkUtil, tempProcUtil, tempUtilList);

count = bestfound = 0;

while (count<MAXPROCS+(MAXPROCS*MAXPROCS) && bestfound){
I* if new assignment is better, keep it ~
if (tempUtilList[count] < bestUtilList~count]){

currentProc = j

for (k=0; k<MAXPROCS+(MAXPROCS*MAXPROCS); k++){

bestUtilList [k] = tempUtilList [k];

bestfound = 1;

/* if new assignment is worse, keep old assignment ~
if (tempUtilList[count] > bestUtilList[count]){

bestfound = 1;

count++;

107

/* update tables to reflect readyTask being schedule on

currentProc */

updateTables (linkUtil, procUtil, edgemat, routes, currentProc,

readyTask, nodes, sched);

/* assign readyTask to currentProc */

(sched+readyTask) -> processor =currentProc;

setOverhead (edgemat, routes, currentProc, readyTask, nodes,
sched, routeDelay);

/* determine length of the cylinder by adding comptime, overhead, and

routing on each processor and comparing to find the largest
cylTime = 0;

for (i=0; i<procs; i++){

tempCylTime = (long)*(routeDelay+i);

for (j=l; j<nodes; j++)(
if ((sched+j)->processor == i)

tempCylTime += ((long) (sched+j)->compTime

+ (long) (sched+j)->overheadTime);

if (tempCylTime > cylTime){

cylTime = tempCylTime;

/* set start times, finish times, and order of execution ~
for (i=0; i<procs; i++)

finishTime = 0;
ord = 1;

for (j=l; j<nodes; j++)
if ((sched+j)->processor= i{

(sched+j)->order = ord

(sched+j) ->startTime =finishTime;

finishTime += (long) (sched+j) ->compTime
+ (long) (sched~j)->overheadTime;

(sched+j)->finishTime = finishTime
+ (long) (sched+j)->cornmTime+ (long) (* (routeDelay+i));

ord++;

/* find indicies ~
assignlndex (sched, edgeinat, nodes, cylTime, 1, minlndex);

108

/* adjust indices so minimum index is zero ~
for (i=l; i<nodes; i++)(

if ((sched+i)->index < minlndex)
minlndex = (sched+i)->index;

for (i=l; i<nodes; i++){

(sched+i)->index -= minlndex;

free((void*) order);

void
determineOrder (mnt *ord, mnt *edgemat, struct schedData *sched, mnt
nodes)

mnt i, j, k, bytes;
mnt *scheduled;
long temp, max;

scheduled = (int*) calloc (nodes, sizeof(int));

for (i=l; i<nodes; i++) { * indicate that no nodes are ready to ~
(scheduled~i) = 0; / be scheduled (0) *

scheduled =1; / indicate that host node is already

scheduled (1) *

for (i=0; i<nodes-l; i++){

max = 0;
for (j=l; j<nodes; j++) (/* check to see which node has

greatest *
if (!*(scheduled~j)) { /* comptime plus message passing

time

temp = (long) (sched+j)->compTime;
for (k=0; k<nodes; k++) {

if (*(edgemat+k+(nodes*j)) != 0){

temp += (long) (INSTOVHD+SETUP);

if (*(edgemat+j+(nodes*k)) != 0){

bytes = *(edgemat+j+(nodes*k));

temp += (long)INST-OVHD;

temp += (((long)SETUP*(long) ((bytes/BLOCK SIZE)+l))

+ (long) (BYTEl*(float)bytes));

if (temp > max){

max = temup;

109

*(ord+i) = j

(scheduled+((ord+i))) =1; /* indicate that it is scheduled and

repeat until all nodes are

scheduled /

free((void*) scheduled);

void

copyTables (long linksrc[MAXPROCS+l] [MAXPROCS+l],

long procsrc[MAXPROCS+l],

long linkrec[MAXPROCS+l] [MAXPROCS+l),

long procrec[MAXPROCS+l])

mnt i, j;

/* copy one link utilization and processor utilization table to the

others *

for (i=O; i<=MAXPROCS; i++)

procrecti] = procsrc[i];

for (j=O; j<=MAXPROCS; j++)
linkrec[i) [j] = linksrc[i] [j];

long
findMax (long linkUtil rMAXPROCS+l] [MAXPROCS+l],

long procUtil[MAXPROCS+l])

mnt i, j;
long ternp=O;

for (i=O; i<MAXPROCS; i++) (/* find the largest utilization time ~
if (procUtil[i] > temp) (/* of all processors

temp =procUtil[i];

for (i=O; i<MAXPROCS; i++) { /* find largest utilization time of *

for (j=O; j<MAXPROCS; j++) (/* all links

if (linkUtil[i][j] > temp){
temp = linkUtil[i] [j];

110

return temp; /* return the largest utilization time of processors
and links

void

updateTables (long LUtil [MAXPROCS+l] [MAXPROCS+l],

long PUtil[MAXPROCS+l] ,imt *edgemat,

mnt *routes [MAXPROCS+l] [MAXPROCS+l], mnt procAssigned,
mnt readyTask, mnt nodes, struct schedData *sched)

mnt i, j, numlinks, from, to, bytes;

mnt *currentRoute;

/* add comp time to proc utilization table for proc assigned *
PUtil [procAssigned] += (long) (sched+readyTask) ->compTime;

/* for all previously scheduled parents of the node *
for (i=O; i<nodes; i++)(

if (*(edgemat+i+(nodes*readyTask)) !=0
&& (sched+i)->processor != -1)

bytes =* (edgemat+i+ (nodes *readyTask));
from =(sched+i) -> processor;

/* if on the same processor, add memory access time to

processor utilization *
if (from == procAssigned){

PUtil[from] += ((long)MEMACCESS +

(long) ((float)bytes*BYTEMENACCESS,));
PUtil[procAssigned] += ((long)MEMACCESS +

(long) ((float)bytes*BYTEMENACCESS));

/* otherwise, add overhead, setup, and first link time to
processor utilization

else {
PUtil[from] += (long)INSTOVHD-

PUtil[procAssigned] ±= (long) (INSTOV}{D±SETUP);

currentRoute = routes[from] [procAssigned];

numlinks = * currentRoute;

PUtil~from] += (((long)SETUP*(long) ((bytes/BLOCK&SIZE)+l))

+ (long) (BYTEl* (float)bytes));

/* if greater than 1 link and greater than 1 block, add
extra link time to processor utilization *

if (numlinks > 1 && bytes > BLOCK TSIZE)
PUtil[from] += ((long)ROUTING +

(long) (BYTE2*(float)BLOCKSIZE) +

(long) (BYTE3* (float) (((bytes/BLOCK SIZE)

-1) *BLOCK SIZE)));

/* for each link along the route, add comm time to link

utilization
for (j=l; j<nurnlinks; j++)

if (j==l)

LUtil[frorn][*(currentRoute+j)] ±=

(((long)SETUP*(long) ((bytes/BLOCKSTZE)+l))

+ (long) (BYTEl* (float)bytes));

else(

if (bytes <= BLOCKSIZE)

LUtil[fromn][*(currentRoute+j) 1 += ((long)ROUTING +

(long) BYTE2*(float)bytes));

else

LUtil (from] [* (currentRoute+j)] += ((long)ROUTTNG +

(long) (BYTE2* (float)BLOCK-SIZE)

+ (long) (BYTE3*(float) (bytes

-BLOCKSIZE)));

from =*(currentRoute+j);

PUtil[frorn] += ((long)RTNGDLY +

(long) (BYTERTDLY* (float)bytes));

if (numliriks==l){

LUtil[fron] [procAssigned] += (((long)SETUP* (long) ((bytes!

BLOCK SIZE)+l))+(long) (BYTEl*(float)bytes));

else

if (bytes <= BLOCK-SIZE)(

LUtil~from] [procAssigned] += ((long)ROUTING +

(long) (BYTE2*(float)bytes));

else(

LUtil [from] [procAssigned] += ((long)ROUTING +

(long) (BYTE2*(float)BLOCK-STZE) +

(long) (BYTE3* (float) (bytes-BLOCKSIZE)));

/* for all previously scheduled children of the node *

for (i=O; i<nodes; i±+) (
if (*(edgemat+readyTask+(nodes*i)) !=0

&& (sched+i)->processor !=-1)

112

bytes = *(edgemat+readyTask+(nodes*i));
to = (sched+i) -> processor;

from = procAssigned;

/* if on the same processor, add memory access time to
processor utilization

if (to ==procAssigned){
PUtil[to] += ((long)MEM ACCESS +

(long) ((float)bytes*BYTEMEM ACCESS));
PUtil[procAssigned] += ((long)MEM_-ACCESS +

(long) ((float)bytes*BYTEMEM-ACCESS));

/* otherwise, add overhead, setup, and first link time to

processor utilization

else {
PUtiltfrom] += (long)INSThOVHD;

PUtil[to] += (long) (INST_-OVH-D+SETUP);

currentRoute = routes[from] [to];

numlinks = * currentRoute;
PUtil[from] += (((long)SETUP*(long) ((bytes/BLOCK-SIZE)+l))

+ (long) BYTEl*(float)bytes));

/* if greater than 1 link and greater than 1 block, add
extra link time to processor utilization *

if (numlinks > 1 && bytes > BLOCK -SIZE)
PUtil[from] += ((long)ROUTING +

(long) (BYTE2*(float)BLOCKSIZE) +

(long) (BYTE3*(float) (((bytes/BLOCKSIZE)
-1) *BLOCKSIZE)));

/* for each link along the route, add comm time to link

utilization
for (1=1; j<numlinks; j±+)(

if (j==l)
LUtil [from] [* (currentRoute+j)] +=

(((long) SETUP*(long) ((bytes/BLOCK-SIZE)+l))
+ (long) (BYTEl*(float)bytes));

else{

if (bytes <= BLOCK-SIZE){

LUtil[from] [*(currentRoute+j)] += ((long)ROUTING +

(long) BYTE2*(float)bytes));

else

LUtil[from] [*(currentRoute+j)] ±= ((long)ROUTING +

(long) (BYTE2*(float)BLOCKSIZE) +

(long) (BYTE3*(float) (bytes-BLOCKSIZE)));

from =*(currentRoute+j);

113

PUtil[from] += ((long)RTNO_DLY +

(long) (BYTERTDLY*(floaty~bytes));

if (nurnlinks==l){
LUtil[fron] [to] += (((long)SETUP*(long) ((bytes!

BLOCKSIZE)+l)) + (long) (BYTEl*(float)bytes));

else
if (bytes <= BLOCK-SIZE)

LUtil[from] [to] += ((long)ROUTING +

(long) (BYTE2*(float)bytes));

else

LUtil~frorn] to] += ((long)ROUTING +

(long) (BYTE2* (float)BLOCK-SIZE) +

(long) (BYTE3*(float) (bytes-BLOCKSIZE)));

void
se~vrea (n *demtit rots[APRCS1[MXPOS)1

set~verhead (t *edgemat, *shti *rot*~rOCSl][4y ROS)]

mnt i, j, nuinlinks, from, to, bytes, temp;

int *currentRoute;

/* for all previously scheduled parents of the node *

for (i=O; i<nodes; i++) (

if (*(edgemat+i+(nodes*readyTask)) !=0

&& (sched+i)->processor 1=-1)(

bytes =* (edgemat+i+ (nodes *readyTask));
from =(sched+i) -> processor;

/* if on the same processor, add memory access time to

overhead
if (from == procAssigned){

(sched+i)->overheadTime += MEMACCESS;
(sched+readyTask)->overheadTime += MEMACCESS;

/* otherwise, add message passing time, based on number of

blocks and number of bytes, to overhead

else {
(sched+i) ->overheadTime += INST OVHD;

(sched+readyTask) ->overheadTime += (INSTOVED+SETUP);

114

currentRoute =routes[from] [procAssigned];

numlinks = *currentRoute;

(sched~i) ->overheadTime += ((SETUP ((bytes/BLOCK-SIZE)+l))
+ (int) (BYTEl*(float)bytes));

if (numlinks > 1 && bytes > BLOCK-SIZE){

(sched+i) ->overheadTime += (ROUTING +

(int) (BYTE2*(float)BLOCK-SIZE) +

(int) (BYTE3* (float) (((bytes/BLOCK-SIZE)
-1) *BLOCK SIZE)));

temp = ROUTING + (int) (BYTE3*(float) (bytes % BLOCKSIZE))

* ((ROUTING + (int) (BYTE2*(float) (BLOCK SIZE)))

* (numlinks - 2));

if (temp > (sched+i)->cornmTiine){

(sched+i)->commTime = temp;

if (numlinks > 1 && bytes <= BLOCK-SIZE)

temp = (ROUTING + (int)(BYTE2*(float)bytes))
* (numlinks - 1);

if (temp > (sched+i)->commTime){

(sched~i)->commTimne = temp;

/* add routing delay to delay array for all processors that

messages pass through *
for (j=l; j<numlinks; j++){

from = *(currentRoute+j);
*(rDelay+from) += (RTNGDLY +

(int) (BYTERThDLY* (float)bytes));

/* for all previously scheduled children of the node ~
for (i=O; i<nodes; i++) {

if (*(edgemat~readyTask+(nodes*i)) != 0
&& (sched+i)->processor !=-1)

bytes = *(edgemat+readyTask+(nodes*i));

to = (sched+i) -> processor;
from =procAssigned;

/* if on the same processor, add memory access time to

overhead
if (to == procAssigned){

(sched+i)->overheadTime += MEN_-ACCESS;
(sched+readyTask)->overheadTime += MEMACCESS;

/* otherwise, add message passing time, based on number of
blocks and number of bytes, to overhead

115

else(
(sched-4readyTask) ->overheadTime += INSTLOVHD;

(sched~i)->overheadTirne += (INST_OVHD+SETUP);

currentRoute = routes[fron] [to];

numlinks = *currentRoute;

(scheci+readyTask) ->overheadTime += ((SETUP* ((bytes!

BLOCKSIZE)+l)) + (int)(BYTEl*(float)bytes));

if (nurnlinks > 1 && bytes > BLOCKSIZE)(
(sched+readyTask)->overheadTime += (ROUTING +

(int) (BYTE2*(float)BLOCK SIZE) +

(int) (BYTE3*(float) (((bytes/BLOCKSIZE)

-1) *BLOCK SIZE)));

temp = ROUTING + (int) (BYTE3*(float) (bytes % BLOCK-SIZE))

+ ((ROUTING + (int) (BYTE2*(float) (BLOCKSIZE)))

* (numlinks - 2));

if (temp > (sched+readyTask)->commTime)

(sched+readyTask) ->commTime = temp;

if (numlinks > 1 && bytes <= BLOCKSIZE)

temp = (ROUTING + (int)(BYTE2*(float)bytes))

* (nuxnhinks - 1);

if (temp > (sched+readyTask)->commTime){

(sched+readyTask) ->coinmTime = temp;

/* add routing delay to delay array for all processors that

messages pass through *
for (j=l; j<nurnlinks; j++)

from = *(currentRoute+j);

*(rDelay+from) += (RTNG-DLY +

(int) (BYTERTDLY*(float)bytes));

void
assignlndex (struct schedData *sched, int *edgemat, int nodes,

long cTime, mnt current, int index)

mnt i;

(sched+current)->index = index;

/* for all parents of the node, set index of parent according to

whether the parent is finish executing before or after the start

116

time of the node during the cylinder *
for (izl; i<nodes ; i+±) {

if (*(edgemat+i+(nodes*current))){

if ((sched+i)->index == INT MAX)
if ((sched+i) ->processor == (sched+current) ->processor)

if ((sched+i)->order < (sched+current)->order) (

assignlndex(sched, edgemat, nodes, cTime, i, index);

else

assignlndex(sched, edgemat, nodes, cTixne, i, index+l);

else{

if ((sched+i)->finishTime <= cTime){

if ((sched+i)->finishTirne >

(sched+current) ->startTirne){
assignlndex(sched, edgemat, nodes, cTime, i,

index+l);

else{

assignlndex(sched, edgemat, nodes, cTime, i,

index);

else{

if ((sched+i)->finishTime % cTiine >
(sched+current) ->startTirne)

assignlndex(sched, edgemat, nodes, cTime, i,

index+2);

else

assignlndex(sched, edgemat, nodes, cTime, i,

index+l);

/*fo al hldenofth od, etide o cil ccrdngt

tifomalchlde of the ndstidxo child accoring toeclne

for (i=l; i<nodes ; i++)(

if (*(edgemat+current+(nodes*i))){
if ((sched+i)->index == INT MAX I

(sched+i)->index >= (sched+current)->index)

if ((sched+i)->processor ==(sched+current)->processor){

if ((sched+i)->order > (sched+current)->order) (

assignlndex(sched, edgernat, nodes, cTime, i, index);

117

else{

assignlndex(sched, edgernat, nodes, cTiine, i, index-i);

else
if ((sched+i)->finishTirne <= cTixne){

if ((sched+i)->startTiine <

(sched+current) ->finishTirne)
assignlndex(sched, edgemat, nodes, cTime, i,

index-i);

else{

assignlndex(sched, edgeinat, nodes, cTime, i,

index);

else{

if ((sched+i)->startTiine <

(sched+current)->finishTirne % cTirne)

assignlndex(sched, edgernat, nodes, cTime, i,

index-2);

else
assignlndex(sched, edgeinat, nodes, cTime, i,

index-i);

void
sor~tl~on tmp~nkti[MXPOCS1]MAPRCS1}

log} m~o~ilMXRC+1

sor~tl long uternLinktil [MAXPROS+l] [RSMAXPROCS)l],

mnt i, j, index;
long temp;

index = MAXPROCS + (MAXPROCS*MAXPROCS) -1

/* put procUtil numbers in utilList ~
for (i=O; i<MAXPROCS; i++) {

utilList[i] = tempProcUtil[i];

/* put linkUtil numbers in utilList ~
for (i=O; i<MAXPROCS; i++) (

118

for (j=O; j<MAXPROCS; j++) {
utilList[MAXPROCS+i+(j*MAXPROCS)] = tempLinkUtil[i] [j];

}

/* sort the utilList, largest first */
for (i=O; i<index; i++) (

for (j=O; j<index; j++) {
if (utilList[j] < utilList[j+l])

temp = utilList[j];
utilList[j] = utilList[j+l];
utilList[j+l] = temp;

}
}

)

D. PACKAGING HEADER FILE

/* This file is codegen.h. It is the header file for the RPS Packaging
functions */

#ifndef CODEGEN H
#define _CODEGEN_H

struct node (/* structure to store all needed data about the */

int number /* nodes of the task graph
char filename[9];
char nodename[20];
int numfrom;
int numto;
int *from;
int *to;
int index;

/* Function that generates the code that is run on the host PC and the
transputers. Also generates a batch file to compile all code
generated */

int codeGen();

/* Creates the files for the code generation and calls all functions

that generate code */

void createProcesses(int procs, int nodes, int edges);

/* Reads the schedule file and stores the processor mapping in map and

the run order in ord */

119

void readSchedule (int *map, int *ord, int nodes);

/* Reads the graph file and stores all of the nodes data in theNodes */

void readNodes (struct node *theNodes, int nodes);

/* Generates a list of all edges in the graph and the sending and
recieving nodes associated with them

void generateEdges (struct node *theNodes, int *edgeMatrix, int *map,
int nodes);

/* Generates the code for any processor based on the nodes assigned to
it, The location of the other nodes, and the edges of the graph */

void makeProc (int *map, int *ord, int *edgeMat, struct node *theNodes,
int nodes, int edges, int pnum, int time, int synch);

/* Generates the code for the host PC processor based on the I/O routine
provided and the location of nodes that require I/O *0

void makeHost (int *map, int *edgeMat, struct node *theNodes, int nodes,
int edges, int nprocs, int time);

#endif

E. PACKAGING SOURCE FILE

/* This file is codegen.c. It is the source file for all RPS Packager

functions */

#define MAXPROCS 16

#include "codegen.h"
#include <stdio.h>
#include <limits.h>

char *incSuff = ".inc";
char *toSuff = ".to";
char *fileSuff = ".fil";
char *codeSuff = ".tcs";

FILE *schedule;
FILE *graph;
FILE *process;

int
codeGeno)
{

int i, numprocs, numnodes, numedges;

120

schedule = fopen("schedule.cgd", ..r1);

graph = fopen("graph.cgd", ..r") ;

fscanf (schedule, "Number of processors:%d\n\n", &numprocs);

fscanf (graph, "%d%d\n", &numnodes, &:nurnedges);

if (numprocs<=MAXPROCS)
createProcesses(numprocs, numnnodes, numnedges);

else
if (nuxnprocs>MAXPROCS)

printf(
"This program cannot be used with more than %d processors.\n"

,MAXPROCS);

fclose(schedule);

fclose (graph);

return 0;

void

createProcesses(int procs, int nodes, mnt edges)

char processNaine[9] = "host.c";

mnt i, temp, time, synch;
mnt *mapping;
mnt *order;
mnt *edgeMatrix;
struct -node *theNodes;

FILE *batfile;

mapping = (int*) calloc ((nodes-i), sizeof(int));
order = (int*) calloc ((nodes-i), sizeof(int));

theNodes = (struct node*) calloc (nodes, sizeof(struct node));

edgeMatrix = (int*) calloc ((4*edges), sizeof(int));

readSchedule (mapping, order, nodes);

readNodes (theNodes, nodes);

generateEdges (theNodes, edgeMatrix, mapping, nodes);

printf

("Do you wish time measurement to be included in your program?\n"l);

printf ("(0 for no, 1 for yes):");
scanf ("%d", &time);

printf

("Do you wish synchronization to be included in your program?\n"l);
printf ("(0 for no, 1 for yes):");

121

scanf ("%d", &synch);

/* create batch file for compiling program ~
batfile = fopen("compile.bat", "w");

fprintf (batfile,
".c:\\tc\\bin\\tcc -ml -c -Ic:\\para~soft\\hostinc host.c\n.')

fprintf (batfile, "c:\\tc\\bin\\tcc -ml -ehost.exe host.obj

c:\\para~soft\\lib\\exprtc.lib\n")
process = fopen(processName, "w");
makeHost (mapping, edgeMatrix, theNodes, nodes, edges, procs, time);

fclose (process);

processName[Ol 'l

processName~l] = ''

processName[2] = 'o';

processName[3] = ''

for (i=O; i<procs; i++){

if (i<lO) (

processName[4] = 48+i;

processName[5] = 1.1;

processName[6] =''
processName[7] = \;

else{

if (i<l00){

temp = 1

temp = temp/i;

processName[4] = 48-itemp;

temp = i-temp*1O;

processNa~me[5] = 48+temp;
processName[6] = K'.;

processName[7) = ''

processName[8] = \;

fprintf (batfile, "c:\\pa~rasoft\\bin\\tcc -o proc%d %s\n"

Ii, processName) ;

process = fopen(processName, "w");
makeProc (mapping, order, edgeMatrix, theNodes, nodes, edges,

i, time, synch);

fclose (process);

free((void*) mapping);
free((void*) edgeMatrix);
for (i=O; i<nodes; i+±)(

free((void*) (theNodes+i) ->from);

free((void*) (theNodes+i) ->to);

122

free((void*) theNodes);

void

readSchedule (int *map, int *ord, int nodes)

mnt i, trash;

for (i=l; i<nodes; i++,map++,ord++)

fscanf (schedule, "Node %d :processor %d, order %d\n", &trash,

map, ord);

fscanf (schedule, '.\n.);

void
readNodes (struct node *theNodes, mnt nodes)

mnt i, j, trash;
float junk;

for (i=O; i<nodes; i++, theNodes++){

fscanf (graph, "%d\n", &theNodes->number);

fscanf (graph, "%s\n", theNodes->filename);

fsc~anf (graph, "%s\n", theNodes->nodename);

fscanf (graph, "%f\n", &junk);

fscanf (graph, "%d", &theNodes->numfromn);

/* allocate memory for parents of node *

if (theNodes->numfrom > 0)
theNodes->from = (int*)calloc (theNodes->numfrom, sizeof(int));

else

theNodes->from = 0;

/* allocate memory for children of node *

for (j=0; j<theNodes->nuinfrom; j++) (
fscanf (graph, "%d", (theNodes->from+j));

fscanf (graph, "%f", &junk);

fscanf (graph, "\n");

fscanf (graph, "%d", &theNodes->numto);

if (theNodes->nurnto > 0)

theNodes->to = (int*) calloc (theNodes->numto, sizeof(int));

else
theNodes->to = 0;

for (j=O; j<theNodes->numto; j++)

123

fscanf (graph, "%d", (theNodes->to-ij));

fscanf (graph, "%f", &junk);

fscanf (graph, "\n\n");

if (i)
fscanf (schedule, "Node %d index: %d\n", &trash,

&theNodes->index);

void

generateEdges (struct node *theNodes, mnt *edgeMatrix, int *map,

int nodes)

mnt i, j, k, buffnumn = 0;

for (i0O; i<nodes; i++, theNodes±+){
for (j=0; j<theNodes->numto; j++, edgeMatrix +=4){

edgeMatrix = theNodes->number; / set source of edge *

*(edgeMatrix+l) = *(theNodes->to+j); /* set destination of

edge

/* set the edge number ~
if (theNodes->number){

if (*(map+i-1) == *(map + C*(theNodes->to+j)) -1)){

bufffnum-i+;

*(edgeMatrix+2) = buffnuni;

else
*(edgeMatrix+2) = 0;

void
makeProc (mnt *map, mnt *ord, mnt *edgeMat, struct node *theNodes,

mnt nodes, mnt edges, mnt pnum, mnt time, mnt synch)

mnt i, j, k, count, diff, numincludes, maxlndex=0, minlndex=TNT MAX;
mnt tocounter, fromcounter, currentProc, overallmax=0,

overallmin=INTMAX;

mnt currentEdge, arraycount;
FILE *nodefile;

char buffer[8i];
char currentFile[l3];

char arraybuf [10];

fprintf (process, "#include \"express.h\11\n");

124

/* add other includes to the file *

for (iz~l; i<nodes; i++)(
if (*(map+i-1) == pnum)

strcpy (current~ile, (theNodes+i) ->filename);

strcat (currentFile, incSuff);

nodefile = fopen(currentF'ile, "Ir");

fscanf (nodefile, '%d\n", &numincludes);

for (j=O; j<numincludes; j++)(
fscanf (nodefile, "%s\n", buffer);

fprintf (process, "#include %s\n", buffer);

folose (nodefile);

fprintf (process, ..\n");

/* declare mapping variable *

fprintf (process, "mnt mapping[%d] = (0", nodes);

for (i=0; i<nodes-l; i++)

fprintf (process, ",%d", *(map+i));

fprintf (process, .1};\n");

/* declare types variable *

fprintf (process, "mnt types[%d] = (0", edges+l);

for (i=l; i<=edges; i++)

fprintf (process, ",%d", i);

fprintf (process, "};\n\n");

/* compute maximum and minimum indices *

for (i=l; i<nodes; i±+) (
if ((*(map+i-1) == pnum) && ((theNodes+i)->index > maxlndex)){

maxlndex = (theNodes+i)->index;

if ((*(map~i-l) == pnum) && ((theNodes-ii)->index < minlndex))

minlndex = (theNodes+i)->index;

if ((theNodes+i)->index > overallmax)
overallmax = (theNodes+i)->index;

if ((theNodes+i)->index < overallmin)(
overallmin = (theNodes+i)->index;

if (minlndex == INT MAX)

minlndex = 0;

diff = maxlndex - minlndex;

/* determine if same process buffering is needed and which edges of

125

the graph are involved *
for (irl; i<nodes; i+±)

if (*(map+i..4) == pnum)

strcpy (currentFile, (theNodes+i) ->filenarne);

strcat (currentFile, toSuff);

nodefile = fopen(currentFile, 'Ir");

for (j=0; j<(theNodes+i)->nurnto; j++){
fgets (buffer, 80, nodefile);
currentProc = * ((theNodes+i) ->to~j);
for (k=0; k<edges; k±+)(

if ((theNodes~i) ->number == * (edgeMat+ (4*k))

&¤tProc == * (edgeMat+(4*k)+l)

&&*(edgeMat+(4*k)+2)){

count = 0;

while (buffer[countli= '\n' && buffer~count])
fprintf (process, "%c", buffer~count]);

count ++;

fprintf (process, buf%d[%d]", *(edgeMa~t+(4*k)+2),

diff+l);

if (buffer[count] =)
arraycount = 0;

while (buffer[count+l+arraycountl != P){

arraybuf arraycount] =

buffer Ecount+l+arraycount];
arraycount++;

arraybuf[arraycount] = \;

else{

arraybuf[O] = I'~;

arraybuf[l] = \;

*(edgeMat+(4*k)+3) = atoi(arraybuf);

while (buffer~count] != I\n') {

fprintf (process, "%c", buffer~count]);

count++;

fprintf (process, ";\n");

fclose(nodefile);

fprintf (process, "\n");

/* node functions ~

126

for (i=l; i<nodes; i++) (

tocounter =fromcounter =0;

if (*(map+i-l) == pnum)

stropy (currentFile, (theNodes+i) ->filenarne);

strcat (currentFile, codeSuff);

nodefile = fopen(currentFile, "r");

while (fgets(buffer, 80, nodefile) !=0) (/* get next line *

j = 0; /* of .tcs file *

while (buffertj] =

j++

/* if it's a read, generate exread code *

if (buffer[j] = +&&buffer[j+l] ==

&& buffer[j+2] =

currentProc =* ((theNodes+i) ->from+fromcounter);

for (k=0; k<edges; k±+)(

if ((theNodes+i)->nuinber == *(edgeMat+(4*k)+l) &

currentProc ==*(edgeMat+(4*k)))(

currentEdge = k;

if (*(edgeMat+(4*currentEdge)+2)){

if (*(edgeMat+(4*currentEdge)+3) > 1){
for (k=0; k<j; k++)

fprintf (process,

fprintf (process, "for (loopcount=0; loopcount<");

fprintf (process, ".%d; ..,
*(edgeMat+(4*currentEdge)+3));

fprintf (process, "loopcount++) (\n");

for (k=0; k<j+3; k++)

fprintf (process," ;

count =j + 3;
while (buffertcount] 1 '

count++;

count ++;

while (buffer[count] ''

fprintf (process, "%c", buffer[count]);

count++;

fprintf (process, "[loopcount]

fprintf (process, "buf%dfj,
*(edgeMat+(4*currentEdge)+2));

fprintf (process, "(index %");

127

fprintf (process," %d)] [", diff+l);
fprintf (process, "loopcount];\n");

for (k:O; k<j; k++) {

fprintf (process, a');
I

fprintf (process, .. }\n");

fromcounter++;
I

else {

for (k=O; k<j; k++) {
fprintf (process, " ");

}

fprintf (process, *

count = j + 3;
while (buffer[count] 1= '() {

count++;
I
count++;
while (buffer[count] -) {

fprintf (process, "%c", buffer[count]);
count++;

I

fprintf (process, " =

fprintf (process, "buf%d[",

*(edgeMat+(4*currentEdge)+2));

fprintf (process, "(index %");

fprintf (process, %d)];\n", diff+l);

fromcounter++;
I

I

else (

for (k=0; k<j; k++)
fprintf (process, " ")

fprintf (process, "exread (");
count = j + 3;
while (buffer[count] : 'U) (

count++;
)
count++;
while (buffer[count] 1= ')' ii

buffer[count+l] 1: ';')
fprintf (process, "%c", buffer[count]);
count++;

128

fprintf (process, 11, &mapping[%d], &:types[",

currentProc);
fprintf (process, "%.d]) ;\n', currentEdge);

frorncounter++;

else

/* if it's a write, generate exwrite code *

if (buffer~ji] ''& buffer[j+l) == '-' &

buffer[j+2] =

currentProc =* ((theNodes+i) ->to+tocounter);
for (k=O; k<edges; k++) (

if ((theNodes~i) ->nuxnber == * (edgeMat+(4*k)) &

currentProc == *(edgeMat+(4*k)+l))
currentEdge = k;

if (*(edgeMat+(4*currentEdge)+2))
if (*(edgeMat+(4*currentEdge)+3) > 1)

for (k=O; k<j; k++){

fprintf (process,

fprintf (process,
"..for (loopcount=O; loopcount<");

fprintf (process, ".%d; ",

*(edgeMat+(4*currentEdge)+3));

fprintf (process, "loopcount+±) (\n");

for (k=O; k<j+3; k++){

fprintf (process,"

fprintf (process, "buf%d[',,
*(edgeMat+(4*currentEdge)+2));

fprintf (process, "(index V");
fprintf (process, " %d)][(", diff+l);

fprintf (process, "loopcount]

count = j + 3;

while (buffer~count] ''

count++;

count ++;

while (buffer[count] ''

fprintf (process, "%c", buffer[count]);

count+4+;

fprintf (process, "[loopcount] ;\n");

129

for (k=O; k<j; k++)
fprintf (process,

)

fprintf (process, ")\n");

tocounter++;
)
else {

for (k=O; k<j; k++)
fprintf (process,

)

fprintf (process, "buf%d[",
*(edgeMat+(4*currentEdge)+2));

fprintf (process, "(index %");
fprintf (process, " %d)] : *(, diff+l);

count = j + 3;
while (buffer[count] () {

count++;
}
count++;

while (buffer[count] ,
fprintf (process, "%c", buffer[count]);
count++;

]
fprintf (process, ");\n");
tocounter++;

}
)

else
for (k=O; k<j; k++) {

fprintf (process,
)
fprintf (process, "exwrite (');
count = j + 3;
while (buffer[count] 1=

count++;
)

count++;
while (buffer[count] !)

buffer[count+l] :;
fprintf (process, "%c", buffer[count]);
count++;

fprintf (process, ", &mapping[%d], &types[",
currentProc);

fprintf (process, "%d]) ;\n", currentEdge);
tocounter++;

130

)

/* otherwise, print the line to the file */

else (
fprintf (process, "%s", buffer);

)
)

}

fprintf (process, "\n");
fclose(nodefile);

}
}
fprintf (process, "\n")

/* generate main part of the node code */

fprintf (process, "int\nmain()\n(\n int i, iterations;\n");

/* add if timing selected */

if (time) (
fprintf (process, long timing[2];\n");

}

fprintf (process, "\n mapping[O] = HOST;\n");

fprintf (process, "\n exbroadcast(&iterations, mapping[O],
sizeof(iterations),");

fprintf (process, " ALLNODES, NULLPTR, &types[%d]);\n\n", edges);

fprintf (process, " iterations - %d;\n\n", diff);

/* add if timing selected */

if (time) (
fprintf (process, " timing[O] = extime(;\n\n");

}

/* add if synch selected */

if (synch) {
for (i=O; i<overallmax-maxIndex; i++)

fprintf (process, exsync();\n");
)

}
fprintf (process, "\n");

/* generate early cylinder iterations based on indices */

for (i=0; i<diff; i++) {
for (j=l; j<nodes; j++)

for (k=l; k<nodes; k++)

if ((*(map+k-l) == pnum) &&
((maxIndex - (theNodes+k)->index) <= i)
&& *(ord+k-l) == j) (

fprintf (process, " %s;\n", (theNodes+k)->nodename);

)

131

}
)

/* add if synch selected */
if (synch) (

fprintf (process, exsync();\n")
}
fprintf (process, "\n");

fprintf (process, for (i=O; i<iterations; i++) {\n");

/* generated middle cylinder iterations */
for (i=l; i<nodes; i++) {

for (j=l; j<nodes; j++) {
if (*(map+j-l) == pnum && *(ord+j-1) == i) {

fprintf (process, %s;\n", (theNodes+j)->nodename);
}

}

/* add if synch selected */
if (synch) {

fprintf (process, exsynco;\n");
)

fprintf (process,)\n\n");

/* generate final cylinder iterations based on indices */

for (i=O; i<diff; i++) (
for (j=l; j<nodes; j++)

for (k=l; k<nodes; k++) {

if ((*(map+k-l) == pnum) &&
(((theNodes+k)->index - minIndex) < (diff-i))
&& *(ord+k-1) == j) (

fprintf (process, %s;\n", (theNodes+k)->nodename);
}

}
}
/* add if synch selected */
if (synch) (

fprintf (process, exsync();\n");

fprintf (process, "\n");
)

/* add if synch selected */
if (synch) (

for (i=O; i<minIndex-overallmin; i++) {
fprintf (process, exsync();\n");

1

132

fprintf (process, ..\n");

/* add if timing selected *

if (time)

fprintf (process, " timing[l] = extime();\n");

fprintf (process, " exwrite (timing, sizeof(timing),

&mapping[O], &types[%d]) ;\n\n", edges);

fprintf (process, " return O;\n}\n1);

void

makeHost (mnt *map, mnt *edgeMat, struct node *theNodes, int nodes,
int edges, mnt nprocs, mnt time)

mnt i, j, k, count, tocounter, fromcounter, numincludes, current;

mnt infiles, outfiles, overalimax = 0;

FILE *nodefile;

char buffer[81], bufferl[8l];

char currentFile[13];

fprintf (process, "#include \"express.h\"\n");

fprintf (process, "#include <stdio.h>\n'1);

/* add other includes to the file */
strcpy (currentFile, theNodes->filename);

strcat (currentFile, incSuff);

nodefile = fopen(currentFile, lrl);

fscanf (nodefile, "%d\n", &numincludes);

for (j=O; j<numincludes; j++) (

fscanf (nodefile, "%s\n", buffer);

fprintf (process, "#include %s\n", buffer);

fprintf (process, 11\n.)
fclose (nodefile);

fprintf (process, "char *dev = \"/dev/transputer\" ;\n");

for (i=0; i<nprocs; i++) (

fprintf (process, "char *proc%d = \"proc%d\V;\n", i, i);

fprintf (process, 11\n.);

/* generate mapping variable ~
fprintf (process, "long iterations;\n");
fprintf (process, "mnt i;\n");
fprintf (process, "imt mapping[9-d] ={0", nodes);

for (i=O; i<nodes-l; i++)

133

fprintf (process, 11,%d", *(map+i));

fpriritf (process, ");\n");

/* generate types variable ~
fprintf (process, "mnt types[%d] = (0", edges+l);

for (i=l; i<=edges; i++)

fprintf (process, 11,%d", i);
fprintf (process, ");\n");

strcpy (currentpile, theNodes->filename);

strcat (currentFile, fileSuff);

nodefile zfopen(currentFile, "r");

/* generate tile pointers for I/0 */
fscanf (nodefile, "%d\n", &infiles);

for (j=l; j<=infiles; j±+) (
fscanf (nodefile, "%s\n", buffer);

fprintf (process, "FILE *infile%d;\n"~, j);

fscanf (nodefile, "%d\n", &outfiles);

for (j=l; j<=outfiles; j++) (
fscanf (nodefile, "%s\n", buffer);
fprintf (process, "FILE *outfile%d;\n", j);

fprintf (process, "1\n");
fclose (nodefile);

tocounter = fromcounter = 0;

strcpy (currentFile, theNodes->filenarne);

strcat (currentFile, codeSuff);

nodefile = fopen(currentFile, "r");

for (i=l; i<nodes; i+±)(
if ((theNodes+i)->index > overallmax){

overallinax = (theNodes~i)->index;

overallmax++;

while (fgets(buffer, 80, nodefile) !=0) (/* get next line from

file *

j= 0;

while (buffertj] =,){

/* if it's a read, generate exread code *

if (buffer[j] == '+' && buffer[j+l] == '+' && buffer[j-i2] =

current =* (theNodes->frorn+froimcounter);

for (k=0; k<j; k++) (

134

fprintf (process,

fprintf (process, "if ((i >= %d)& ,

(overallinax- (theNodes+current) ->index));

fprintf (process, "Ci < iterations + %d)) (\n",

(overalimax- (theNodes-icurrent) ->index));

for (k=O; k-<j+3; k++){

fprintf (process,

fprintf (process, "exread ()

count = j + 3;

while (buffer[count] ! '

count++;

count++;

while (buffer[count] 11 I buffer[count+l]

fprintf (process, "%c", buffer[count]);

count++;

fprintf (process, ", &mapping[%d], &types["', current);

for (k=0; k<edges; k++)(

if (theNodes->number == *(edgeMat+(4*k)+l) &&

current *(edgeMat±(4*k))){

fprintf (process, "%d]);\n", k);

fgets(buffer, 80, nodefile);

fprintf (process, 11 %s", buffer);

for (k=0; k<j; k++)

fprintf (process,

fprintf (process, .,)\n");

frorncounter++;

else{

/* if it's a write, generate exwrite code *

if (buffer[j] ==&& buffer[j+l] == 11

&& buffer[j+21 = -

current = * (theNodes->to+tocounter);

for (k=0; k<j; k++){

fprintf (process,

fprintf (process, "if ((i >= %d) && "

(overallmax-l- (theNodes+current) ->index));

fprintf (process, "(i < iterations + %d)) {\n",

135

(overallmax-l-(theNodes+current)->index);

fgets(bufferl, 80, nodefile);
fprintf (process, " %s", bufferl);

for (k=0; k<j+3; k++) {
fprintf (process,

}
fprintf (process, "exwrite (");
count = j + 3;

while (buffer[count] 1: '() {
count++;

}

count++;
while (buffer[count] != ' 1 1I buffer[count+l] 1=

fprintf (process, "%c", buffer[count]);
count++;

}

fprintf (process, ", &mapping[%d], &types[", current);
for (k=0; k<edges; k++) {

if (theNodes->number == *(edgeMat+(4*k)) &&
current == *(edgeMat+(4*k)+l))

fprintf (process, "%d]);\n", k);
I

I

for (k=0; k<j; k++) {
fprintf (process,

}
fprintf (process, ")\n");
tocounter++;

I

else C /* otherwise, print the line to the file */
fprintf (process, "%s", buffer);

I
I

I
fprintf (process, "\n");
fclose(nodefile);

/* generate main part of the host */
fprintf (process, "\nint\nmain()\n(\n");

if (time) {
fprintf (process, long times[2];\n");

)

fprintf (process, " int nprocs = %d, src = 0, fd;\n\n", nprocs);

fprintf (process, " mapping[0] = HOST;\n\n");

136

strcpy (currentFile, theNodes->filename);

strcat (currentFile, fileSuff);

nodefile = fopen(currentFile, 'r");

fscanf (nodefile, "%d\n", &infiles);

for (j=l; j<=infiles; j+±) {
fscanf (nodefile, "%s\n", buffer);

fprintf (process, " infile%d = fopen(\"%s\V, \.r\.) ;\n.,
j, buffer);

fscanf (nodefile, "%d\n", &outfiles);

for (j=l; j<=outfiles; j++) {
fscanf (nodefile, "%s\n", buffer);

fprintf (process, outfile%d = fopen(\',%s\", \'w\');\n1,
j, buffer);

fclose(nodefile);

fprintf (process,
"..\n if ((fd = exopen(dev, nprocs, src)) < 0) (\n");

fprintf (process, " printf (\"Failed to access %");
fprintf (process, "d nodes\", nprocs) ;\n");
fprintf (process, " exit (1);\n)\n\n");

for (i=0; i<nprocs; i++) (

fprintf (process, " src = %d;\n", i);
fprintf (process, " if (expload(fd, proc%d, src) < 0) (\n", i);

fprintf (process, " printf(\"Failed to load program V);

fprintf (process, "s\", proc%d) ;\n", i);
fprintf (process, exit (2);\n)\n");

fprintf (process, src = 0;\n\n printf (\)

fprintf (process, "nEnter the number of iterations:\");\n');
fprintf (process, scanf (\"%");

fprintf (process,

"ld\", &iterations) ;\n\n exstart(fd, ALLNODES) ;\n");

fprintf (process, " exmain (fd, ALLNODES) ;\n

fprintf (process, " exbroadcast (&iterations, mappingt0],

sizeof(iterations), ALLNODES, NULLPTR, &types[%d]) ;\n", edges);

/* generate the iteration ioop */
fprintf (process, "\n for (i=0; i<iterations+%d; i++) {\n",

overailmax);
fprintf (process, " %s;\n)\n\n", theNodes->nodename);

/* add if timing selected *

if (time) {
fprintf (process, " for (src=O; src<nprocs; src±±) {\nl");

fprintf (process, " exread (times, sizeof(times), &src,

&types[%d]);\n", edges);

137

fprintf (process, printf (\"proc %");

fprintf (process, "d : %");
fprintf (process, "id microseconds\\n\", src,

times[l]-times[O]);\n)\n");
I
fprintf (process, "\n");

for (j=l; j<=infiles; j++) {
fprintf (process, " fclose (infile%d);\n", j);

I
for (j=l; j<=outfiles; j++)

fprintf (process, fclose (outfile%d);\n", j);
I

fprintf (process, "\n exclose (fd);\n\n return 0;\n)");
I

F. RPS PROFILER MAIN PROGRAM

/* This is the main program for the RPS Profiler */

#include "ttest.h"

int
main()

createProcesses();

return 0;
)

G. PROFILER HEADER FILE

/* This file is ttest.h. It is the header file for the RP$ Profiler
functions */

#ifndef _TTEST_H
#define _TTEST_H

/* Creates the files for the code generation and calls all functions
that generate code */

void createProcesses);

/* Generates the code for any processor based on the nodes assigned to
it, The location of the other nodes, and the edges of the graph

void makeProc (char filename[9], char funcname[20]);

/* Generates the code for the host PC processor based on the I/O routine
provided and the location of nodes that require I/O

138

void inakeHost ~

#endif

H. PROFILER SOURCE FILE

/* This file is ttest.c. It is the source file for all RPS Profiler

functions */

#define MAXPROCS 16

#include "ttest.h"

#include <stdio .h>

char *incSuff = .n;

char *toSuff = "t"

char *fileSuff = .i;

char *codeSuff = ".tcs";

FILE *process;

void

createProcessesoC

char hostName[7] = "host.c";

char procName[7] "proc.c;,

char filename[9];

char funcname[20];

FILE *batfile;

batfile = fopen("compile.bat", 'w");

fprintf (batfile,
".c:\\tc\\bin\\tcc -ml -c -Ic:\\parasoft\\hostinc host.c\n");

fprintf (batfile, "c:\\tc\\bin\\tcc -ml -ehost.exe host.obj
c:\\parasoft\\lib\\exprtc.lib\n");

fprintf (batfile, "c:\\parasoft\\bin\\tcc -o proc proc.c\n');

process = fopen(hostName, "w");

makeHost ();

fclose (process);

printf("Enter the file name for the node being tested: "

scanf("%s", filename);

printf('Enter the function name for the node being tested:)

scanf("%s", funcname);

process = fopen(procName, "w");

makeProc (filename, funcname);

fclose (process);

139

void

makeProc (char filename[9], char funcnarne[20])

int j, numincludes;
FILE *nodefjle;

char buffer[8l];
char currentFiletl31;

fprintf (process, "#include \"express.h\"\n");

/* other includes */

strcpy (currentFile, filename);

strcat (currentFile, incSuff);

nodefile = fopen(currentFile, 11");

fscanf (nodefile, "%d\n", &numincludes);

for (j=0; j<numincludes; j++) (

fscanf (nodefile, "%s\n", buffer);

fprintf (process, "#include %s\n", buffer);

fclose (nodefile);

fprintf (process, .\n");

fprintf (process, "mnt mapping =0;n)

fprintf (process, "mnt types = ;n")

/* node functions */

strcpy (currentFile, filename);

strcat (currentFile, codeSuff);

nodefile = fopen(currentFile, 11r");

while (fgets(buffer, 80, nodefile) !=)0)

j = 0;

while (buffer[j] =

j++

if (buffer[j] ==' &buffer[j+l] == 1+' && buffer[j±2] =

else{

if (buffer[jl = && buffer[j+l] = &
buffer[j+2] =

else{

fprintf (process, "%s", buffer);

fprintf (process, "\n\n-);

fclose(nodefile);

140

fprintf (process, 'int\nmainO\n(\n int i, iterations=lOOO;\n");

fprintf (process, " long timing[2];\n");

fprintf (process, "\n mapping = HOST;\n");
fprintf (process, " timing[O] = extime();\n\n");
fprintf (process, " for (i=O; i<iterations; i++) {\n");
fprintf (process, " %s;\n", funcnarne);

fprintf (process, ")nn)

fprintf (process, " timing[l] = extime();\n");

fprintf (process,

exwrite (timing, sizeof(tiining), &mapping, &types) ;\n\n");
fprintf (process, " return O;\n}\n");

void

rnakeHost (

FILE *nodefile;

fprintf (process, "#include \"express.h\"\n");
fprintf (process, "#include <stdio.h>\n\n");
fprintf (process, "char *dev = \/dev/transputer\" ;\n")
fprintf (process, "char *proc V'rc1;nn)

fprintf (process, "int types 0;nn=
fprintf (process, "int\nmain()\n{\n");

fprintf (process, " long times[2];\n");

fprintf (process, " mnt nprocs = 1, src = 0, fd;\n\n");
fprintf (process, " if ((fd = exopen(dev, nprocs, src)) < 0) {\n");

fprintf (process, " printf (VFailed to access V");
fprintf (process, "d nodes\", nprocs) ;\n");
fprintf (process, " exit (l);\n)\n\n");

fprintf (process, " if (expload(fd, proc, src) < 0) (\n");

fprintf (process, " printf(\Failed to load program V');
fprintf (process, "s\", proc) ;\n%);

fprintf (process, " exit (2);\n }\n\n");
fprintf (process, " exstart(fd, ALLNODES) ;\n");
fprintf (process, " exmain (fd, ALLNODES);\n\n");

fprintf (process,
.1 exread (times, sizeof(times), &src, &types);\n');

fprintf (process, " printf (VNode computation time =V;

fprintf (process,

"ld microseconds\\n\", (times[l]-times[0])/10O0);\n\n")

fprintf (process, exclose (fd);\n\n return 0;\n)");

141

142

LIST OF REFERENCES

[AKI 93] Akin, C., Efficient Scheduling of Real-Time Compute-Intensive Periodic
Graphs on Large Grain Data Flow Multiprocessors, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1993.

[BEL 92] Bell, H. A., A Compile-Time Approach For Chaining and Execution
Control in the ANIUYS-2 Parallel Signal Processor, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1992.

[BOK1 81] Bokhari, S. H., "On the Mapping Problem," IEEE Transactions on
Computers, v. C-30, pp. 207-214, March 1981.

[BOK2 81] Bokhari, S. H., "A Shortest Tree Algorithm for Optimal Assignments
Across Space and Time in a Distributed Processor System," IEEE Transactions on
Software Engineering, v. SE-7, pp. 583-589, November 1981.

[DIX1 93] Dixit-Radiya, V. A., and Panda, D. K., Mapping and Scheduling in
Distributed-Memory Systems using Temporal Communication Graph Model,
Technical Research Report, Ohio State University, Columbus, Ohio, January 1993.

[DIX2 93] Dixit-Radiya, V. A., and Panda, D. K., Task Assignment with Link
Contention on Distributed-Memory Systems, Technical Research Report, Ohio State
University, Columbus, Ohio, April 1993.

[DUN 94] Dundar, C. A., Improvement of Janus Using Pegasus I-Meter Resolution
Database with a Transputer Network, Master's Thesis, Naval Postgraduate School,
Monterey, California, March 1994.

[ELR 90] El-Rewini, H., and Lewis, T. G., "Scheduling Parallel Program Tasks onto
Arbitrary Target Machines," Journal of Parallel and Distributed Computing, v. 9,
pp. 138-153, June 1990.

[HAM 92] Hammond, S. W., Mapping Unstructured Grid Computations to Massively
Parallel Computers, Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, New
York, February 1992.

[HIC 95] Electronic Mail from Mr. Arthur Hicken, May 3, 1995, Parasoft
Corporation, Monrovia, California.

[HOA 93] Hoang, P. D., and Rabaey, J. M., "Scheduling of DSP Programs onto
Multiprocessors for Maximum Throughput," IEEE Transactions on Signal
Processing, v. 41, pp. 2225-2235, June 1993.

[INM 85] INMOS Limited, Bristol, U. K., IMS B004 Evaluation Board User Manual,
1985.

143

[INM 86] INMOS Limited, Bristol, U. K., IMS BOO3 Evaluation Board User Manual,
1986.

[INM 89] INMOS Limited, Bristol, U. K., The Transputer Databook, Second
Edition, 1989.

[KAS 94] Kasinger, C. D., A Periodic Scheduling Heuristic for Mapping Iterative
Task Graphs Onto Distributed Memory Multiprocessors, Master's Thesis, Naval

Postgraduate School, Monterey, California, September 1994.

[KER 70] Kernighan, B. W., and Lin, S., "An Efficient Heuristic Procedure for
Partitioning Graphs," The Bell System Technical Journal, v. 49, pp. 291-307,
February 1970.

[LOV 88] Lo, V. M., "Heuristic Algorithms for Task Assignment in Distributed

Systems," IEEE Transactions on Computers, v. 37, pp. 1384-1397, November 1988.

[NEG 94] Negelspach, G. L., Grain Size Management in Repetitive Task Graphs for
Multiprocessor Computer Scheduling, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1994.

[PAR 90] Parasoft Corporation, EXPRESS C User's Guide Version 3.0, 1990.

[SHU 92] Shukla, S., Little, B., and Zaky, A., "A Compile-Time Technique for
Controlling Real-time Execution of Task-level Data-flow Graphs," Proceedings of
the 1992 International Conference on Parallel Processing, v. II, pp. 49-56, August
1992.

144

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-5101

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. Dr. Amr Zaky, Code CS/ZA 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Lt Charles Brian Koman 1
81 Atlas Rd.
Basking Ridge, NJ 07920

6. Dr. D. K. Panda 1
CIS Department
The Ohio State University
Columbus, Ohio 43210

7. Dr. Man-Tak Shing, Code CS/SH 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

145

146

